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Abstract 

 A new approach to calculating nucleon-nucleon scattering matrix elements using 

a proven atomic time-dependent wave packet technique is investigated.  Using this 

technique, reactant and product wave packets containing centripetal barrier information 

are prepared in close proximity to the nuclear potential energy well.  This is 

accomplished by first using an analytic equation to determine the wave packets in a 

suitable intermediate asymptotic state where the centripetal barrier is negligible.  Then, 

the split operator technique is used to propagate the wave packets back to their original 

positions under the full Hamiltonian.  Here, the product wave packet is then held 

stationary while the reactant wave packet is allowed to evolve and explore the nuclear 

well.  Scattering matrix elements are computed from the correlation function between the 

stationary wave packet and the evolving wave-packet after it has interacted with the 

nuclear potential.  Determination of nucleon-nucleon phase shifts follows directly from 

computation of the scattering matrix elements.  This technique is ideally suited for 

determining nuclear scattering matrix elements and phase shifts as it provides a high 

degree of energy resolution with lower computational effort than traditional time 

independent methods.   These advantages will lead to a greater understanding of nuclear 

reaction dynamics. 
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TIME DEPENDENT CHANNEL PACKET CALCULATION 

OF TWO NUCLEON SCATTERING MATRIX ELEMENTS 

1. Introduction 

1.1. Motivation 

 In 1953, Hans Bethe published an article in Scientific American where he 

discussed the force that holds the nucleus together.  In this article, he makes the 

following comment.   

“In the past quarter century physicists have devoted a huge amount of 

experimentation and mental labor to this problem – probably more man-

hours than have been given to any other scientific question in the history 

of mankind [1].” 

Over the 50 years that have passed since Hans Bethe penned this article for Scientific 

American, not much has changed.  Many of the world’s greatest minds are still engaged 

performing experiments, examining data, and developing models in an attempt to 

characterize the nuclear strong force that binds nuclei together.  Currently, a first 

principles description of even the two-body nucleon interaction does not exist.  Quantum 

chromodynamics, our closest first principles approach, performs well at high Giga-

Electron Volt (GeV) energies but has not been extended to the lower energies for 

computational reasons [2,3].   
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 In lieu of a first principles approach, the nuclear community has developed 

phenomenological nucleon – nucleon (NN) models to describe observed features of the 

strong force.  Early attempts to describe the nuclear interaction phenomenologically, such 

as the one by Gammel and Thaller in 1957, were only able to recreate aspects of the 

experimental data set.  The experimental data set consists primarily of scattering matrix 

elements derived from observables.  Gammel and Thaller’s as well as all subsequent 

phenomenological model’s are all based on parameterized fits to experimental data [4-

31].   Of the more recent models, three in particular, have been able to reproduce almost 

all of the features of the experimental two-nucleon data set: the high precision models of 

Nijmegen, Bonn, and Argonne National Labs (ANL) [2, 4, 32, 33].   

 A numerical technique is required to calculate scattering matrix elements from 

any modeled potential surface for comparison to experimental data.  In order to compute 

scattering matrix elements, the nuclear community has traditionally relied on techniques 

based on solutions to the time-independent form of Schrödinger’s equation, 

 2kψ ψ′′ =  (1.1) 

where k is the wave vector.  Indeed with the exception of some time-dependent 

momentum space calculations performed by Holz and Glöckle [12,34] and a couple of 

deuteron breakup calculations in the 80s’ [12], almost all nuclear scattering matrix 

elements have been computed via time independent means.  In the time-independent 

approach, the coordinate or momentum space approximations to the wave function, ψ , 

provide s-matrix elements at a single energy for a variety of asymptotic quantum 

numbers.  Although many techniques exist to solve a second order linear differential 

equation such as the Schrödinger equation, the one that is utilized typically by the nuclear 
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community is the Numerov method.   In this approach, a Taylor series expansion of the 

wave function is used to develop a three-term recurrence relation.  From this recurrence 

relation, scattering matrix elements are then computed by matching boundary conditions 

where solutions are assumed to be linear combinations of free space solutions.   

 While the nuclear community has focused primarily on computing scattering 

matrix elements via time-independent methods, the atomic and molecular community has 

researched, developed, and implemented time-dependent techniques as an alternative 

approach for calculating atomic reaction probability.  References to time-dependent 

scattering theory first started to appear in the atomic and molecular literature as early as 

1956 [35].  However, it was not until the early 80’s that the computing power became 

available for effective employment of time-dependent algorithms.  Since then, these 

techniques have made significant contributions to our understanding of few-body atomic 

interactions [36-50].   

Time-dependent approaches rely on propagation of wave packets via 

approximations to the time evolution operator,  

 ˆ /ˆ ( ) iHtU t e−=   (1.2) 

where  is the reduced Planck’s constant (a.k.a. Dirac’s constant) and Ĥ is the 

Hamiltonian.  In contrast to the previously mentioned time-independent methods, which 

provide s-matrix elements at a single energy for a variety of asymptotic quantum 

numbers, time dependent methods provide s-matrix elements for a single set of quantum 

numbers as a function of energy in a single calculation.   



 

4 

 

One time-dependent method that has been successfully applied to a variety of 

atomic and molecular problems is called the Channel Packet Method (CPM) [36-40, 52].  

The CPM allows for calculation of a single scattering matrix element in contrast to time-

independent techniques that compute the entire column of the scattering matrix.  Since 

typically only one scattering matrix element for a range of energies is desired in a nuclear 

scattering calculation, the CPM is an ideal choice for nuclear scattering calculations.       

CPM calculations begin by preparing two complex Gaussian wave packets over a 

range of energies for which we wish to determine s-matrix elements.  One of these 

contains negative momentum and is designated as the reactant state.  The other contains 

positive momentum and is designated as the product state.  These two wave-packets are 

then typically propagated using the split-operator method first away from the interaction 

region under the asymptotic Hamiltonian then back to their original positions under the 

full Hamiltonian.  At this point, the two wave-packets are handled differently.  The 

product wave-packet is held stationary whereas its reactant state counterpart is allowed to 

continue to evolve and probe the characteristics of the nuclear potential.  As the reactant 

wave packet leaves the interaction region, its correlation with the product wave-packet is 

assessed to determine the scattering matrix elements between the initial and final states.    

In this dissertation, the CPM technique is used to compute nucleon-nucleon 

scattering matrix elements for proton-proton, proton-neutron, and neutron-neutron 

scattering events.  Of course, for this application of the CPM technique to be successful, a 

complete understanding of the potential energy basis and form of the Hamiltonian is 

necessary.  Since ANL’s model has enough supporting documentation to give insight into 

a natural choice for potential energy basis and Hamiltonian, this research effort uses the 
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AV18 model to determine two-body nuclear scattering matrix elements.  This novel 

approach to performing nuclear scattering calculations not only provides a significant 

improvement in computational efficiency over existing time independent techniques, it 

also provides the nuclear community with intuitive tool for visualizing nuclear reaction 

dynamics.  These characteristics will be invaluable to future scattering research efforts in 

nucleon-deuteron scattering and muon catalyzed reactions. 

1.2. Overview 

This research effort examined the suitability of using the time-dependent channel 

packet method to calculate two nucleon scattering matrix elements.  The effort was 

broken into two phases.  Phase 1 evaluated the outputs and failure modes of the AV18 

FORTRAN subroutine to gain insight into a suitable choice for the coordinate system, 

Hamiltonian and basis set.  Phase 2 assessed how well the CPM technique could be 

adapted to the nuclear scattering problem.  A FORTRAN CPM code was developed and 

validated against an analytic solution to a square well problem of similar dimensions as 

the nuclear well.  Scattering matrix elements were then calculated from the AV18 

potential surfaces.  

The significant research accomplishments presented in this document are: 

1. Establishment of new and more efficient, time-dependent nuclear technique, 
which is ideally suited for determining nuclear scattering matrix elements.  
(The numerical effort associated with the Time Dependent Channel Packet 
Method scales as N2 or better whereas the time-independent methods currently 
employed by the nuclear community scale as N3.)1

 
   [50] 

                                                 

1 Here, N refers to the number of grid points in the calculation. 
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2. Provides the nuclear community with a unique intuitive tool for visualizing 
scattering dynamics in both momentum and coordinate representations. 
 

3. Provides a complete set of nuclear scattering information for a specified value 
of angular momentum with a significantly higher degree of energy resolution 
that is provided by the current time independent methods employed by the 
nuclear community. 

 
 This document is organized as follows.   Chapter 2 outlines how scattering matrix 

elements are obtained from experimental observables.  Chapter 3 focuses on the AV18 

potential and the time-independent calculation of scattering matrix elements.  A brief 

exploration into the physical basis behind the One Pion Exchange and the strong force 

parameterization is included.  In Chapter 4, the theoretical background behind using the 

CPM to calculate S-Matrix elements is described.  Later in Chapter 5, concerns 

pertaining to using the CPM technique to calculate scattering matrix elements from the 

AV18 potential surfaces are addressed.   Topics reviewed here include reference frame, 

basis, Hamiltonian, 1/r cutoff correction, units, coupled basis diagonalization and s-

matrix parameterizations. Also presented in this section is a comparison between a time-

independent and a time dependent solution to a 1-D Square Well problem.  Then in 

Chapter 6, the phase-shifts obtained from the nuclear CPM calculations are presented and 

compared to ANL’s published results.  Chapter 7 reviews the technical achievements of 

this research effort and presents possible avenues for future research.  The appendices 

contain a complete set of CPM nuclear phase shifts through J = 5 
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2. Experimental Background 

This chapter provides a heuristic discussion of how S-Matrix elements are 

calculated from experiment.  It opens with a general discussion of why examining nuclear 

structure requires development of high-energy particle accelerators.  The acceleration 

methods discussed here are limited to the basic theory of charged particle acceleration 

and the leading techniques of producing high-energy neutron beams.  This section then 

concludes with a discussion of how scattering matrix elements are obtained from 

scattering high-energy polarized particle beams off target nuclei. 

2.1. Electrostatic Accelerators 

 Based on Einstein’s 1905 explanation of light’s particle like behavior, De Broglie 

theorized that particles analogously might also exhibit a wave like behavior.  His 

argument was simple.  If photons have momentum like particles, should not particles 

have a wavelength, D
h
p

λ =  similar to photons?  His proof came in 1927 when Davisson 

and Germer observed an angle dependent interference pattern from the scatter of an 

electron beam off a Ni crystal target.  It was learned that in order to obtain information 

about atomic structure, the De Broglie wavelength ( Dλ ) must be roughly on the same 

order or smaller than the dimensions of the target under study.  As Table 2.1 indicates, 

obtaining information about underlying nuclear structure and the short-range nuclear 

force (range 1-2 fm) that binds nucleons together requires development of particle 

accelerators capable of accelerating particles to MeV energies. 
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Table 2.1.  The De Broglie Wavelengths of the Photon, the Electron, the Proton, and the Neutron.   

 De Broglie Wavelength, Dλ  fm 

Energy 

 

Photon Electron Proton Neutron 

0.1 MeV 1.2x104 3.7x103 9.1x102
 9.0x102

 

1 MeV 1.2x103
 8.7x102 2.9x102 2.9x102 

10 MeV
 1.2x102 1.2x102  9.0x101 9.0x101 

100 MeV 1.2x101
 1.2x101 2.8x101 2.8x101 

 
 

 Early accelerators such as the one used by Davisson and Germer to prove De 

Broglie’s theory were quite simple (Figure 2.1).  Electrons were accelerated from a 

grounded heated filament located at the cathode across a gap toward a positive anode.  

Instead of impinging upon the face of the anode, a small hole in the anode allows the 

particle beam to pass and interact with an intended target.  Electrostatic generators, 

however, were unreliable and prone to electrostatic breakdown in the KeV energy range, 

well below the MeV energy range required to perform nuclear scattering experiments.  

The inability of electrostatic generators to provide suitable particle beams for nuclear 

scattering experiments spawned development of two new types of accelerators still used 

today, the linear accelerator and the cyclotron [53-56]. 
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Figure 2.1.  Schematic Diagram of Electrostatic Accelerator.  A grounded heated filament accelerates 
electrons across a gap toward a positively charged anode.  A gap in the anode allows the electron 
beam to pass on to an intended target 

 
 

- + 

e- Heated Filament 

Cathode Anode 

Potential 

Ground 
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2.2. The Linear Accelerator 

 The basic concept of linear particle acceleration was developed by Ising and 

improved upon by Wideroe, Sloan, Lawrence, and Alvarez [57].   As previously 

mentioned, electrostatic accelerators have problems exceeding breakdown voltage.  The 

linear accelerator, or linac, overcomes this by accelerating a particle in a series of stages 

(Figure 2.2).   

 
 

 

Figure 2.2.  Alvarez’s Basic Linac Concept.  A pulsed waveform is applied to each cylinder (drift 
tube) to accelerate particles across each gap.   The drift tubes also shield the particle beam from 
decelerating effects. [57] 

 

 
 
Here, a charged particle emitted from an ion source passes through a series of hollow 

cylindrical electrodes called drift tubes.  As the particle passes across each gap, it is 

accelerated by a pulsed waveform applied to each tube from a high power radio 

frequency oscillator.  Each of the drift tubes also functions to shield the particle from a 

variety of decelerating effects.  The beauty of this approach is that higher particle beam 

Ion Source 

r.f. oscillator 

Copper Casing 

Drift Tubes 
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energies can be achieved by simply adding more stages.  Electron linacs such as the two-

mile Stanford Linear Accelerator Center (SLAC) have been able to achieve electron 

energies in the 50 GeV range.  Proton linacs have been able to achieve a maximum 

energy of about a GeV [57].   

2.3. The Cyclotron 

Extending the concept of the drift tube, Ernest Lawrence used a magnetic field to 

reduce the size of the accelerator.  His idea was to manufacture a pair of drift tubes in the 

form of a bisected compressed hollow sphere (Figure 2.3).   

 
 

  

Figure 2.3.  Basic Cyclotron Schematic.  Particles injected between two strong magnets are forced to 
follow a circular path and are accelerated by an rf oscillator across the gap between the magnets. 
[57] 
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These “dee’s”, as he called them, were placed between two strong magnets which forces 

the particles to follow a circular path.  An RF oscillator matched to the particles exact 

circulation frequency excites the cyclotron drift tubes and ensures the sign of acceleration 

is always in the same direction when the particles hit the gap.  In this manner, cyclotrons 

have been able to produce proton beams up to 25 MeV.  Above 25 MeV however, 

relativistic effects become significant.  The relativistic mass increase requires more 

energy to maintain the specified velocity, which results in a drop in revolution frequency 

and a loss of synchronization with the accelerating potential.  The synchrotron maintains 

synchronization by systematically varying the cyclotron RF frequency and magnetic 

field.  Synchrotrons, such as CERN’s Super Proton Synchrotron have obtained energies 

in excess of 400 GeV [57].    

2.4. Production of Polarized Neutron Beams 

 Having introduced basic accelerator theory for charged particles, the question 

remains how to produce a polarized neutron beam given that neutrons do not have charge 

and cannot be accelerated by any of the traditional means identified in the last section.  A 

reasonable first choice as a source of neutrons is a nuclear reactor since copious free 

neutron production is a byproduct of the fission process.  Reactors however can only 

produce neutrons with a maximum energy of about 1 MeV, far too low for nucleon-

nucleon scattering experiments which typically require neutrons ranging from 1MeV up 

to a GeV [57].  This section summarizes two of the leading techniques of producing a 

polarized neutron beam with a higher kinetic energy than a reactor can generate.   
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   The first method of generating a high-energy neutron beam is through the breakup 

of polarized deuterons2.  In this technique, scatter of a polarized deuteron beam off a 

beryllium target induces dissociation and generates a polarized proton-neutron beam.  

Passing this beam through magnetic fields generated by spin rotating solenoids and 

precessing magnets not only strips away the residual charged particles but also provides a 

method of orienting the neutron beam along the vertical, horizontal, or longitudinal axis3

2 
n

s cm

.  

Since neutron beams generated by deuteron breakup have a high flux (25x105 ), 

polarization (60 %), and small energy spread (FWHM ~ 50 MeV), this is considered the 

preferred method of neutron beam generation [58].   

 Few particle accelerators, however, are capable of accelerating deuterons, so 

proton – neutron exchange serves as an alternative method.  In this technique, a stream of 

polarized neutrons is produced by scattering an incident polarized proton beam off a 

liquid deuterium target.  Here, the polarization, flux, and energy spread of the neutrons 

depend on the scattering angle.  If the proton beam has a 180-degree angle of incidence, 

the resultant neutron beam has optimal energy, intensity and minimal spread, but beam 

polarization is only ~40%.  Neutron beam polarizations upwards of 60% can be obtained 

if the incident proton beam has a 160-degree angle of incidence and a polarization normal 

to the scattering plane.  If polarized neutron beam with energies greater than 800 MeV are 

                                                 

2 A polarized deuteron has both the proton and neutron spin components aligned in the same direction.    

3 Although the neutron is electrically neutral, it does have a magnetic moment of -1.913 magnetons.  (The 

proton magnetic moment is 2.973 magnetons.)  This is one of the leading indicators of underlying nuclear 

structure.    
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desired, the polarized proton beam is scattered off a light nuclei target such as Li, Be, B, 

or C instead of a liquid deuterium target.  Scatter of protons beams off these targets can 

produce a 50%-60% polarized GeV beam with a peak neutron flux of approximately 

50x105 2 
n

s cm
.  Table 2.2 summaries these methods of producing high-energy neutron 

beams [58]. 

 
 
Table 2.2.  Properties of the Neutron Beams Produced by Different Neutron Beam Productions 
Methods [58] 

Production Method Liquid Deuterium Deuteron Breakup Carbon 

Primary Beam Intensity 

 

0.25-5.0 Aµ ( p ↑ ) 3x1011 ( / )d spill↑  2-10 Aµ ( p ↑ ) 

Neutron Flux ( )[ ]5 210 /  n s cm  0.9-5.0 25 10-50 

Neutron Energy MeV 180-788  300-1150  200-580  

Neutron Polarization [%]
 40−60 59 40−50 

FWHM Resolution MeV 15−20 40−60 11−50 

 
 

2.5. Experimental S-Matrix Elements 

As we shall see in Section 5, it is rather easy to obtain cross sections or other 

observables given the S-matrix elements.  The converse is not true as it is quite difficult 

to construct the S-matrix given observable information.  Here, an outline of the process 

by which experimental S-matrix elements are determined from observables is 

summarized [58].   
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To determine nucleon-nucleon scattering matrix elements from observables 

single, double, and triple scattering parameters are required.  The measurement of the 

single scattering parameter is illustrated in Figure 2.4.   

 

Figure 2.4.  First Scattering Parameter – Differential Cross Section.  A Circular Detector Array is 
Positioned Around a Target to Determine the Angular Distribution of Scattered Particles from an 
Unpolarized source. 

 

Here, an incident unpolarized nucleon beam is scattered by a target located in the center 

of a nucleon detection ring.  Detectors4

rS

 placed at discrete angles and fixed distance, r, 

record the scattered beam intensity  as a function of angle,θ , and in most cases as a 

                                                 

4  Physical limitations on detector size limit the amount of angular resolution. 

 Unpolarized source 

Detector Array 

Target 

θ
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function of azimuth, φ .  The number of particles rS scattered into a solid angle dΩ  at 

angleθ  divided by the incident flux iS  is defined as the differential cross section d
d

σ
Ω

 

[30], 

 2r

i

Sd r
d S

σ
=

Ω
 (2.1) 

 In most cases, the first scatter also polarizes the randomly oriented spins of the 

incident nucleon beam.  The amount of polarization of the nucleon beam resulting from 

the first scatter is the second scattering parameter.  The Polarization observable, P, 

scattered at an angle θ  is defined as,  

 ( ) ( )
( ) ( )

( )
N N

P
N N

θ θ
θ

θ θ
↑ ↓

↑ ↓

−
=

+
 (2.2) 

where N↑ is the number of particles with spin up and N↓ is the number of particles with 

spin down.  The amount of polarization is scattering angle, energy, and particle 

dependent.   

 The triple scattering parameter characterizes how a second scatter alters the 

polarized beam’s direction and magnitude [28].  The orientation of the incident beam 

polarization with respect to the secondary scattering plane determines the experimental 

quantity to be measured.  For example, the depolarization observable, D, reflects the 

amount of polarization remaining in the beam perpendicular to the scattering plane after 

the second scatter.  The depolarization triple scattering parameter measurement is 

represented diagrammatically in Figure 2.5 [28, 31]. 
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Figure 2.5.  Diagrammatic Representation of the Triple Scattering Parameter – Depolarization, D.  
Angles 1 and 2 denote the first and second scatter.  The arrows indicate the direction of beam travel 
and the circles indicate polarization normal to the page. [28, 31] 

 
 
 The triple scattering parameters (D, A, K, M, N), double scattering parameter (P), 

and single scattering parameter ( d
d

σ
Ω

) can be expressed as combinations of five invariant 

amplitudes5
nθ a, b, c, d, and e and the scattering angles from each stage .  Here, A refers 

to the spin correlation, K refers to the polarization transfer, M refers to the scattered 

particle polarization, and N refers to the recoil particle polarization.  Some of the 

equations used in the determination of the invariant amplitudes are presented in Table 2.3 

[58].  In the table, subscripts on the observables label the polarization of the scattered (s), 

recoil (r), beam (b), and target (t) particles and the primes on the subscripts distinguish 

between initial (k), scattered ( 'k ), and recoil ( ''k ) basis.  These equations and others 
                                                 

5 These five amplitudes are invariant with respect to parity conservation, time reversal invariance, the Pauli 

principle and isospin invariance [31].  Parity conservation, time reversal invariance and isospin invariance 

are discussed in Section 3.1.3 
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available in the literature may be combined to eliminate unknowns and solve for one of 

the five invariant amplitudes.  It is these invariant amplitudes that define the experimental 

Scattering Matrix, S  

 
( ) 1 2 1 2

1 2 1 2

1 ˆ ˆ ˆ ˆ( , ') [ ( )( )( ) ( )( )( )
2

ˆ ˆ ˆ                                                     ( )( )( ) ( ) )]

S k k a b a b n n c d m m

c d l l e n

σ σ σ σ

σ σ σ σ

= + + − + + +

− + +

   

  

 (2.3) 

Here, 1 2( )σ σ refer to the usual Pauli Spin Matrices and the center of mass basis vectors 

ˆˆ ˆ,  ,  and n m l reflect the orientation of scattered and incident particles [58].  Typically, 

results from nuclear scattering matrix calculations are presented in the form of a phase 

shift.  How phase shifts are calculated from scattering matrix elements is discussed in 

Section 4.  Here, a Center of Nuclear Studies (CNS) fit (solid line) to experimental data 

(error bars) is shown for the 3P0 proton neutron scattering matrix element (Figure 2.6).   
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Figure 2.6.  Sample CNS Fit to Experimental 3P0 Phase Shift Data for a Proton-Neutron Scattering 
Event.  The error bars are experimental results.  The solid line is a fit to the observed data.
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Table 2.3.  Some Scattering Observables with 0,1, 2 and 3 Spin Indices.  Here θ  labels the center of 
mass scattering angle, 1θ  labels the laboratory angle of the scattered particle, and 2θ labels the 
laboratory angle of the recoil particle.  Observables may be combined to eliminate unknowns, solve 
for the invariant amplitudes (a, b, c, d, or e) and construct the Scattering Matrix, S [58] 

.  Designation Definition 

I Differential Cross Section 

 

{ }2 2 2 2 21
2

a b c d eσ = + + + +  

P Polarization 

   Re( )noooP a eσ = ⋅  

A Spin Correlation 

 

{ }2 2 2 2 21
2nonoA a b c d eσ = − − + +  

 Re( ) cos( ) Re( ) Im( ) sin( )oossA a d b c d eσ θ θ= ⋅ + ⋅ − ⋅  

D Depolarization tensor 

 

{ }2 2 2 2 21
2nonoD a b c d eσ = + − − +  

 
' 1 1 1Re( ) cos( ) Re( ) sin( ) Im( ) cos( )s osoD a b c d b eσ θ θ θ θ θ= ⋅ − + ⋅ − ⋅ −  

K Polarization Transfer 

 

{ }2 2 2 2 21
2onnoK a b c d eσ = − + − +  

 
'' 2 2 2Re( ) cos( ) Re( ) sin( ) Im( ) cos( )os soK a c b d c eσ θ θ θ θ θ= − ⋅ + − ⋅ + ⋅ +  

M Scattered Particle Polarization Contribution  

 Re( ) cos( ) Im( ) sin( )nossM d e a dσ θ θ= ⋅ + ⋅  

 Re( ) sin( ) Im( ) cos( ) Im( )noskM d e a d b cσ θ θ= − ⋅ + ⋅ − ⋅  

N Recoil Particle Polarization Contribution 

 
'' 2 2 2Re( ) cos( ) Im( ) sin( ) Im( ) sin( )os soN c e a c b dσ θ θ θ θ θ= − ⋅ + − ⋅ + − ⋅  

 
'' 2 2 2Re( ) sin( ) Im( ) cos( ) Im( ) cos( )os knN c e a c b dσ θ θ θ θ θ= ⋅ + − ⋅ + + ⋅  
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3.  The AV18 Potential 

The Argonne National Labs (ANL) Theoretical Physics Division has been 

constructing nucleon-nucleon models for over three decades.  ANL’s latest eighteen 

operator model, known as the AV18, has been able to accurately describe the binding 

energy of light nuclei through the atomic number A = 12 and faithfully reproduce the 

experimental phase shifts associated with nucleon-nucleon scattering.  Embedded within 

the AV18 are actually three phenomenological models, one for each possible two-body 

interaction, pp, pn, and nn.  Each of these models contains an electromagnetic ( EMv ), 

one-pion exchange ( vπ ) and intermediate short-range ( Rv ) component [4]   

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

EM R

EM R

EM R

v pp v pp v pp v pp
v np v pn v pn v pn
v nn v nn v nn v nn

π

π

π

= + +
= + +
= + +

 (3.1) 

The sum of the later two components of each model, vπ  and Rv , constitutes the strong 

force contribution.  The proton-proton model, proton-neutron model, and neutron-neutron 

model are summarized in Section 3.1, Section 3.2, and Section 3.3 respectively. 

3.1. The AV18 Proton-Proton Model 

 The most complicated model within the AV18 is the pp as it deals with the 

interaction of two charged particles.  Therefore, a majority of chapter 3 will deal with the 

development of this model.  This chapter has three sub-sections, one for 

( ),  ( ),  and ( ).EM Rv pp v pp v ppπ  .   
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3.1.1. The Proton-Proton EM Potential, ( )EMv pp  

 The form of the electromagnetic portion of the potential utilized by the AV18 has 

the general structure,   

 1 2( ) ( ) ( ) ( ) ( ) ( )EM C C DF VP MMv pp v pp v pp v pp v pp v pp= + + + +  (3.2) 

where 1Cv labels the one-photon exchange, 2Cv labels the two-photon exchange, DFv labels 

the Darwin-Foldy term, VPv labels the vacuum polarization, and MMv labels the magnetic 

moment contributions.   

 The Coulombic interaction is governed by the exchange of virtual photons, one 

for each charged particle involved in the interaction.  Hence, a scattering event involving 

a single proton would undergo an exchange of a single virtual photon, 1Cv , and a two 

proton event would undergo an exchange of two virtual photons, 2Cv .  The one and two 

photon exchange components for pp scattering are represented; 

 ( )1
( )'

pp
C

C
F rv pp

r
α=  (3.3) 

 

2

2 2

( )'( )
2

pp
C

C
p

F rv pp
M r
αα  −

=  
   (3.4) 

where 

 '
p lab

k
M v

αα =  (3.5) 

includes an explicit energy dependence.   Here, r is the separation between the nucleons, 

pM is the mass of the proton, and α is the fine structure constant [4], a dimensionless 

fundamental physical quantity that characterizes the strength of the electromagnetic 
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interaction between the electron and the photon.  The F function, ( )pp
CF x  first proposed 

by Auerbach [43] reflects the finite size of the nucleon charge distribution and 

compensates for the 1
r

 singularity in EMv as r approaches zero [4].  It has functional form,   

 2 3 ( )11 3 1( ) 1 1
16 16 48

pp x
CF x x x x e − = − + + + 

 
 (3.6) 

with x = br and b referring to the exponential cutoff parameter 4.27 fm-1.  Auerbach F 

functions appear in all AV18 electro-magnetic components.   

 From special relativity, it is known that as a particle’s velocity approaches the 

speed of light, the mass of the particle increases.  Since the domain of the AV18 extends 

up to the pion production threshold of 350 MeV, (approximately 37 percent of a proton’s 

rest mass) relativistic effects cannot be ignored.  The Darwin-Foldy term,  

 ( ) 2 ( ),
4DF

p

v pp F x
M δ
α

= −  (3.7) 

is included to compensate for the relativistic effects of a finite sized charged spin ½ 

particle interacting with an electromagnetic field.  Here, Mp refers to the mass of the 

proton in MeV and ( )F xδ refers to another one of Auerbach’s F functions,  

 3 2 ( )1 1 1( )
16 16 48

xF x b x x eδ
− = + + 

 
. (3.8).    

 The vacuum polarization term ( VPν ),  

 
( )1/ 22

( 2 )
2 2

1

1( )2 ' 1( ) 1
3 2

e

pp
m rxC

VP

xF rv pp e dx
r x x

αα
π

∞
−

− = +  ∫ , (3.9) 
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is a quantum correction to classical electrodynamics.  As shown in Figure 3.1, virtual 

charged particle pairs form around the positively charged proton, which reduces the 

protons effective charge. 
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Figure 3.1.  Vacuum Polarization Shielding Effect.  Virtual charged particle pairs form around a 
proton in a vacuum.  The formation of the virtual charged particle pairs reduces the protons effective 
charge. 

 

 
The effective charge increases as distance to the charged particle decreases [59].   The 

vacuum polarization term is required to fit low energy scattering data [4].  Contributions 

from ( )VP ppν  cease to be important above about 30 MeV [27].  In the above equation for 

the vacuum polarization contribution, em  is the mass of the electron in MeV and ( )pp
CF r is 

the same F function used for 1Cv back in the one photon exchange term.    

 The last term of equation (3.2) is the particles magnetic moment, ( )MMv pp .  For 

the proton-proton interaction, the magnetic moment contribution takes the form,  
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 2
1 2 122 3 2 3

( )( )2( ) ( ) (4 1)
4 3 2

LST
MM p p

p p

F rF rpp F r S L S
M r M rδ
α αν µ σ σ µ = − ⋅ + − − ⋅  



  (3.10) 

where µ  labels the magnetic moment, 1 2σ σ⋅
   labels the dot product of the Pauli spin 

matrices of the two protons, and L S⋅


labels the dot product of the total orbital angular 

momentum and total spin angular momentum.  In addition to ( )F xδ already introduced, 

this expression also contains two more of Auerbach’s F functions,  

 

2 3 4 5

2 3 4

1 1 1 1( ) 1 1 exp( )
2 6 24 144
1 7 1( ) 1 1 exp( )
2 48 48

T

LS

F x x x x x x x

F x x x x x x

 = − + + + + + − 
 
 = − + + + + − 
 

 (3.11) 

and the tensor force, S12.  

 12 1 2 1 2ˆ ˆ3( )( )S r rσ σ σ σ= ⋅ ⋅ − ⋅  (3.12) 

 The tensor force term, S12, stems from the slight asymmetry associated with the 

observed nature of the deuteron wave function.  If the deuteron were comprised of merely 

two point particles, then the potential would be entirely symmetric (pure S state) and be 

completely described by spherical harmonics.  This is not however, what is observed.  

The interacting bodies in a nucleon collision are not actually the nucleons but the 

constituents of the nucleons, the quarks.  Protons contain two up and one down quark 

whereas neutrons contain two down and one up quark.  It is the interaction between the 

quarks that gives rise to the slight 4 percent D state component of the deuteron wave 

function. [53].  A list of all AV18 constants is provided in Table 3.1. 
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Table 3.1.  Constants used by the AV18 code. 

 

AV 18 Constants 

c  (MeV fm) 197.32705 

0
mπ  (MeV/c2) 134.9739 

mπ±
 (MeV/c2) 139.5675 

Mp    (MeV/c2) 938.27231 

Mn    (MeV/c2) 939.56563 

1α −  137.03599 

pµ  
2.79285 

nµ  -1.91304 

f2 0.075 

b (fm-1) 4.27 

0r (fm) 0.5 

a (fm) 0.2 

cπ (fm-2) 2.1 
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3.1.2. The Proton-Proton One Pion Exchange Potential, ( )v ppπ   

In quantum electrodynamics, the force between two particles can be described as 

being mediated by the exchange of virtual photons.  Photons have no rest mass so the 

range of the electromagnetic interaction is infinite.  It was Yukawa [26] that first 

suggested that the concept of virtual exchange could be extended to describe the strong 

force between two nucleons.  In his theory, he proposed that since the strong force has a 

finite range, it could be described as being mediated by the exchange of virtual particles 

of non-zero mass called mesons [9, 60].  This simple extension of quantum 

electrodynamics is depicted as a Feynman diagram in Figure 3.2.  

 
 
 

   

Figure 3.2.  Feynman Diagram of a Pi Meson Exchange between Two Arbitrary Nucleons [9] 
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 Here, a single meson π  mediates the interaction between two arbitrary nucleons 

labeled by N.  Since the virtual intermediate state shown here is at an energy 2m cπ higher 

than the initial or final states, the Heisenberg uncertainty principle,  

 2t
mc

∆ ≈
  (3.13) 

places a limit on how long the intermediate meson state may exist.  This length of time 

depends inversely on the mass of the particle.  Since a particle cannot travel farther than c 

times this lifetime, t∆ , a limit is established on the range of the force component the 

particle can carry.  Some calculated meson lifetimes ( t∆ ) and force component ranges 

( x∆ ) based on the Standard Model of Fundamental Particles and Interactions are listed in 

Table 3.2.   

 

Table 3.2   Approximate Meson Masses, Lifetimes ( t∆ ) and Ranges ( x∆ ) Calculated from the 
Standard Model of Fundamental Particles 

Name Mass (MeV) t∆ (s) x∆ (fm) 
Pion

 
140 4.70*10-24 1.41 

Kaon 494 1.33*10-24 0.40 

Rho 770 8.54*10-25 0.26 

D+ 1869 3.51*10-25 0.11 

Eta-c 2979 2.2*10-25 0.07 

 

 
 
 As shown in the table, the lightest meson, the pion, has a range roughly equivalent 

to the observed 1-2 femtometer range of the strong force.  This is a reason why the strong 

force can be viewed as an exchange of virtual pions.  In the laboratory, positive 

(π + ),negative (π − ), and neutral ( 0π ) pions have been observed.  The negative pion (π − ) 
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is the anti-particle for the positive pion (π + ) and both have an approximate rest mass of 

140 MeV.  On the other hand, the neutral pion ( 0π ) has a slightly lower rest mass of 135 

MeV and is its own anti-particle [60].  

 The charge independent Hamiltonian based on the exchange of virtual pions 

between two nucleons can be expressed as [9], 

 ( ) ( )( )
2

1

1
' i i i

i
H f dr r r rµ δ τ σ φ−

=

= − ∇∑∫




  . (3.14) 

where φ


 is a three component vector in isospin space which represents the three different 

pions,  

 

1
1, 1 0

0

0
1, 0 1

0

0
1, 1 0

1

z

z

z

I I

I I

I I

π

π

π

+

−

−

 
 = = = + =  
 
 

 
 = = = =  
 
 
 
 = = = − =  
 
 

 (3.15) 

ir  labels the location of the ith nucleon, f  labels an arbitrary coupling constant, iσ  labels 

the Pauli spin matrices, iτ


 labels the isospin matrices  and µ  labels the inverse scattering 

length/cutoff parameter, 

 mc
h

µ =  (3.16) 

The isospin quantum number,τ , enables us to treat the proton and neutron as a 

different state of the same particle, the nucleon [7].  Possible values for the isospin 
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projection, nzτ , in the uncoupled basis are -½ and ½, with the neutron designated as – ½ 

and the proton as + ½.  In the coupled basis, the total isospin T reflects the total isospin of 

the interaction pair analogous to the total spin quantum, S, either 0 or 1.  In the triplet 

state, T=1, three possible combinations exist,  

 

1

1 0
2

1

↑↑ =

↑↓ + ↓↑ =

↓↓ = −

 (3.17) 

Here, a projection of +1 indicates a proton pair, -1 a neutron pair, and 0 a linear 

combination of proton and a neutron.  The singlet state is also a linear combination of 

protons and neutrons, 

 1 0
2

↑↓ − ↓↑ =  (3.18) 

 Since we are dealing with relativistic energies and spin 0 pions, the relativistic 

Klein-Gordon equation, 

 ( )2 2  source termsµ+ Ψ =  (3.19) 

is used to construct the wave function.  Taking the static limit, removes the time-

dependence from the d’Alembertian such that,  

 2 2= −∇  (3.20) 

and we are left with, 

 ( ) ( ) ( )
2

2 2 1

1
( ) i i i i

i
r f r rµ φ µ τ σ δ−

=

∇ − = ∇ −∑




 . (3.21) 

From equation(3.21), the pion field generated by nucleon 2 is determined to be,  
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 ( )
2

2 2 2
2

( )
4

r rf er
r r

µ

φ τ σ
πµ

− −

= − ∇
−





 , (3.22) 

An assessment of the interaction energy of nucleon 1 with this pion field is obtained via 

substitution into the interaction Hamiltonian from equation (3.14), 

 ( )( )( )
1 22

1 2 1 1 2 22
1 2

'
4

r rf eH
r r

µ

τ τ σ σ
πµ

− −

= − ⋅ ⋅∇ ⋅∇
−

 

 (3.23) 

Eisenberg [9] has reduced this equation by performing the specified derivatives to find, 

 ( )
( )

2
2

1 2 1 2 12 2
1 3 31
3 4

rf ev m c S
c r rr

µ

π π τ τ σ σ
π µ µµ

−     = + + +   
      

 

 



 (3.24) 

 ( ){ }
2

2
1 2 1 2 12

1 ( ) ( ) ( )
3 4

fv m c Y r S T r Y r
cπ π τ τ σ σ

π
 

= + 
 

 

 



 (3.25) 

where T(r) and Y(r) label the tensor and Yukawa terms in equation (3.24).  As indicated 

by the isospin coupling term, ( )1 2τ τ
 

 , a slightly different solution exists for each possible 

interaction combination (nn, pn, or pp).   

 The inclusion of a pion mass ratio 0

s

m
m

π and an exponential cutoff function, 

21 ( )exp c rπ− − are the only differences between the Eisenburg solution above and the 

documented form of the AV18 One Pion Exchange Potential [4],   

( ) ( ) ( )0

0

22
22 2 2

1 2 121 2
1

  ( )  ( ) 1 ( ) ( ) 1 ( )
3 4 s

mf
v pp m c Y r exp c r S T r exp c r

c m
π

π π π πσ σ
π

τ τ= − − + − −
       





 

 (3.26) 

The scaling mass, ms non-dimensionalizes the coupling constant, 
2

4
f

cπ
and has an 

experimentally determined value of 0.075 [4].  The exponential cutoff function,   
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 21 ( )exp c rπ− −  (3.27) 

ensures both the Yukawa ( ( )Y rµ ) and Tensor ( ( )T rµ ) components of the one pion 

exchange potential terminate smoothly as 0r → [4].  In the AV18, the cutoff parameter 

cπ is set at 2.1 fm-2 [4]. 

3.1.3. The Proton-Proton Short Range Potential ( )Rv pp   

 Data obtained from low energy scattering events not only provides insight into the 

nuclear potential’s physical characteristics but also aids in the development of a realistic 

parameterizations of Rv .  Observations have shown that any constructed short-range 

nuclear potential must:  decay rapidly around 1-2 fm, be strongly repulsive at distances 

less than 0.5 fm, be strongly attractive between 0.5 fm and 2 fm, have a depth on the order 

of 40 MeV, and depend on the each nucleon’s intrinsic spin/isospin.  With these ideas in 

mind, we begin our discussion of the theory behind phenomenological potentials [61].   

 Since any nucleon can be labeled by its position r , momentum p , spin σ , and 

isospin τ , any realistic parameterization of the two nucleon nuclear potential must begin 

with the general functional form, 

 1 2 1 2 1 2 1 2( , , , , , , , )v r r p p σ σ τ τ
         (3.28) 

Eisenbud/Wigner and later Okubo/Marshak proposed that this general form could be 

restricted since any potential should adhere to several invariance requirements [28, 61]:   

1. Translational Invariance - The concept of translational invariance simply 

means that the potential should depend only on the relative separation 

between the two nucleons, 1 2r r r= − , not where the two nucleons are in space.   
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The system is closed and no external forces act on the system other than those 

between the two particles so total linear momentum is conserved, 0dpF
dt

= = . 

2. Rotational Invariance - The potential should be constructed such that it is 

invariant under proper rotation.  Since the system is again closed, there are no 

external torques acting in the system, 0dL
dt

τ = =  and the total angular 

momentum L r p= × is conserved.   

3. Galilean Invariance – The concept of Galilean invariance implies that the 

potential should depend only on the relative momentum between the two 

nucleons, 1 2p p p= −  and be independent of inertial reference frames.  A 

change of coordinates involving a constant velocity does should not influence 

the potential.  The same laws of physics apply to all inertial reference frames.     

4. The potential should be Hermitian.  This means that any potential matrix 

should be diagonalizable by a unitary transformations and that all the 

eigenvalues along the diagonal should be real (observable).   

For the moment, we limit the discussion to r , p , 1σ , and 2σ .    

 Given the above invariance requirements, the functional form of the nucleon-

nucleon potential can be restricted to [9], 

 1 2( , , , )v r p σ σ
    , (3.29) 

In addition to the four vectors r , p , 1σ , and 2σ , six other vectors may be constructed, 

 1 2 1 1 2 2,      ,      ,      ,      ,      r p r p r pσ σ σ σ σ σ× × × × × ×
           

. (3.30) 
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Note that we do not need to consider other combinations of vectors or terms containing 

more than one 1σ and/or 2σ  since the identities, 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
A B C B A C C A B

A B C D A C B D A D B C

× × = ⋅ − ⋅

× ⋅ × = ⋅ ⋅ − ⋅ ⋅

       

          

 (3.31) 

and the Pauli matrices property,  

 ( )( ) ( )1 2A B A B i A Bσ σ σ= + ×
    

  

     (3.32) 

can be used to reduce them back to a lower form.  

 From these six vectors and r , p , 1σ , and 2σ , the following scalar combinations 

are possible for the nucleon-nucleon interaction [9]: 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( ) ( )

2
1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

,      ,      ,     ,       ,     ,      ,  
,      ,      ,      ,

,      ,      ,      

r r r r r p p r p
r p r p r p

r p r r r p p

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ × ⋅ × ⋅ × ⋅ ×

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

             

       

              ( )
( )( ) ( )( ) ( ) ( ) ( )( )( )1 2 1 2 1 2,      ,      ,      

r

r r p r r p r p r r p r rσ σ σ σ σ σ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ × ⋅ ⋅ ⋅



                

 (3.33) 

As we are merely trying to garner an understanding of how nucleon-nucleon potentials 

are developed, we have limited this discussion to 1st order terms in momentum.  In 

practice, higher order terms in momentum are often included in potentials like the AV18.   

 To these first four requirements, four more are typically added [9]: 

5. The potential must commute with ( )1 2τ τ+
  , which implies charge must be 

conserved.  This requirement allows for five possible operators in isospin 

space, 

 1 2 1 2 1 2 1 21,      ,     ,      ,     τ τ τ τ τ τ τ τ⋅ + − ×  (3.34) 
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In addition to charge conservation, charge independence is also typically 

imposed so that only the scalars, 1 and 1 2τ τ⋅
 

, which are invariant under 

rotation in isospin space may appear in the nuclear potential [9].   

6. Parity Invariance - The potential should be independent of reflection so only 

even powers of position and momentum may appear together in the potential 

expansion [62], 

 1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , )v r p v r pσ σ τ τ σ σ τ τ= − −  (3.35) 

Of the scalars mentioned in (3.33) only 

 
( ) ( )

( )( ) ( )( )
( )( ) ( )( )
( )( )( )

1 2

1 2

1 2 1 2

1 2 1 2

1 2

1,      ,      ,  
,      ,

,      ,      

,      ,

r p
r p r p

r p r r

r p p r

r p r r

σ σ

σ σ

σ σ σ σ

σ σ σ σ

σ σ

⋅ ⋅

⋅ × ⋅ ×

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

   

     

       

       

     

 (3.36) 

are invariant under parity inversion in addition to the isospin scalars 1 and 

1 2τ τ⋅
 

. 

7. Time Reversal Invariance - The potential should be invariant under time 

reversal operations which implies that spins and momentum can only couple 

only in even number combinations [62], 

 1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , )v r p v r pσ σ τ τ σ σ τ τ= − − −  (3.37) 

Time reversal invariance then further restricts the allowable scalars from 

(3.36) to  

 
( )( )

( ) ( )
1 2 1 2

1 2

1,      ,  

,      ,

r r

r p r p

σ σ σ σ

σ σ

⋅ ⋅ ⋅

⋅ × ⋅ ×

     

     

 (3.38) 
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Since the interaction always involves both particles, the last two terms of 

(3.38) can be expressed as the linear combination6 ( )( )1 2 r pσ σ+ ×
    .  Typically 

this linear combination is written as L S⋅


given the definitions for total orbital 

angular momentum, L


, and total spin, S


, 

 
1 2

L r p

S σ σ

= ×

= +



 



 

 (3.39) 

Protons and neutrons do not change their identity under time reversal so the 

isospin scalars 1 and 1 2τ τ⋅
 

remain.    

 Gammel and Thaler in 1957 utilized combinations of these scalars to create the 

first nucleon-nucleon phenomenological model [28],  

 12( ) ( ) ( )Gammel central Tensor LSv v r v r S v r L S= + + ⋅ . (3.40) 

by expressing ( )centralv r , ( )Tensorv r  and ( )LSv r in the Yukawa form ( )
rev r

r

−

=  and by 

expressing the tensor force 12S  (Section 3.1.1) as a combination of the scalars 

12 1 2 1 2ˆ ˆ3( )( )S r rσ σ σ σ= −   .  Although the Gammel and Thaler model was unable to 

reproduce all observed nn and pp scattering data, it did serve as a basis for further short-

range model development.    

 The AV18 short-range expression for Rv  given by 

 2 2
, , 2 , , , 2

12 ( )
( ) ( ) ( ) ( ) ( ) ( )( )S T S T S T S T S T

R central Tensor L SL L S
v pp v r v r L v r S v r L S v r L S⋅ ⋅

= + + + ⋅ + ⋅  (3.41) 

                                                 

6 The linear combination compliment ( )( )1 2 r pσ σ− ×
   

 vanishes, as it is odd under interchange of 

particle labels [21].   
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includes second order terms in momentum ( )2L S⋅  and 2L .  Each of the five functions in 

equation (3.41) can be expressed as,  

 , , 2 , , 2 ,( ) ( ) ( ) ( )S T S T S T S T S T
i i i i iv r I T r P rQ r R W rµ µ µ = + + +   (3.42) 

Here, the i subscript labels the central, L2, Tensor, L S , and ( )2L S  potentials.  The 

superscripts S/ T label the total spin/isospin of the two-nucleon system and µ  is the 

average of the charged and neutral pion masses.   The constants I, P, Q, and R are 

obtained from curve fitting observed scattering data (Table 3.3). 

 Since T=1 for the pp interaction, only two possible potentials exist for ( )Rv pp , 

one for the singlet state S=0, 0,1( )Rv pp  

 2
0,1 0,1 0,1 2( ) ( ) ( )R central L

v pp v r v r L= +  (3.43) 

 and another for triplet state S=1, 1,1( )Rv pp .   

 2 2
1,1 1,1 1,1 2 1,1 1,1 1,1 2

12 ( )
( ) ( ) ( ) ( ) ( ) ( )( )R central Tensor L SL L S

v pp v r v r L v r S v r L S v r L S⋅ ⋅
= + + + ⋅ + ⋅  (3.44) 

Equation (3.42) also includes a short-range repulsive core represented by the Wood-

Saxon function, [4] 

 
0

1( )
1

W r
r rExp

a

=
− +  

 

 (3.45) 

and,  

 ( )

( )

( )2

2
2

2
2

3 3( ) 1 1
r

c reT r e
r rr

π

µ

µ µ µµ

−
−

  
 = + + − 
    

 (3.46) 
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which has Yukawa form, 
( )re

r

µ

µ

−

.  The parameters r0 (core radius), a (surface thickness), 

and cπ (cutoff) are given in Table 3.3[4]. 

 

Table 3.3.  ( )Rv pp Strong Component Constant Parameters of the AV18 model 

Channel TYPE I MeV P MeV Q MeV R MeV 

S=0, T=1 Central
 -11.27028 3346.6878 1859.5627* 0 

 2L  0.12472 16.780 9.0972* 0 

S=1, T=1 Central -7.62701 1815.4920 969.3863* 1847.8059 

 
2L  0.06709 342.0669 185.4713* -615.2339 

 Tensor 1.07985 0 -190.0949 -811.2040 

 LS  -0.62697 -570.5571 -309.3605* 819.1222 

 2( )LS  0.74129 9.3418 5.0652* -376.4384 

 
 

3.2. The AV18 Neutron-Proton Model 

 Since the AV18 neutron-proton model is not as complicated as the AV18 proton-

proton model, this section will be abbreviated.  This section also has three sub-sections, 

one for each component.   

3.2.1. The Neutron-Proton EM Potential, ( )EMv pn  

 The form of the electromagnetic portion of the AV18 pn model has the general 

structure,   

 1( ) ( ) ( )EM C MMv pn v pn v pn= +  (3.47) 
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where again 1Cv labels a one-photon exchange and MMv labels a magnetic moment 

contribution.  The two photon exchange, Darwin-Foldy, and vacuum polarization 

components are omitted since neutrons interact minimally with the electromagnetic field.  

The remaining two terms differ slightly from the proton-proton counterparts 

1( )Cv pp and ( )MMv pp ,   

 1

( )
( )

C
np

C n

F r
v pn

r
αβ= . (3.48) 

 

( )

1 2 123

1 23

( )2( ) ( )
4 3

( ) 1                    
2 2

T
MM n p

n p

ls
n

n r

F rpn F r S
M M r

F r L S L
M M r

δ
αν µ µ σ σ

α µ σ σ

 = − ⋅ + −  

  ⋅ + ⋅ −    

 

 

 

 (3.49) 

In the above set of equations, nβ is the form factor associated with the electron-neutron 

interaction at the point of zero momentum [30, 63].  Since fixed neutron targets do not 

exist in nature, nβ at zero momentum is extrapolated from high-energy (GeV range) 

electron-deuteron scattering experiments [96].  In the AV18, nβ = 0.0189 fm2 [14].  The 

only other term not already introduced in Section 3.1.1. is another one of Auerbach F 

functions,  

 
2

2 3 4( ) (15 15 6 )exp( )
384

pn
C

bF x x x x x x= + + + −  (3.50) 

Here, again x = br and b refers to the exponential cutoff parameter of 4.27 fm-1, Mr, is the 

nucleon-proton reduced mass, and ( )1 2
1
2

σ σ − 
 

   represents a mixing of spin singlet and 

triplet states.  This mixing contributes minimally to the magnetic neutron-proton 

scattering amplitude [4].     
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3.2.2. The Neutron-Proton OPEP, ( )v pnπ   

 Since the theory associated with ( )v pnπ has already been presented in Section 

3.1.2, this discussion begins with the general expression for vπ  presented in equation 

(3.25), 

 ( ){ }
2

2
1 2 1 2 12

1 ( ) ( ) ( )
3 4

fv m c Y r S T r Y r
cπ π τ τ σ σ

π
 

= + 
 

 

 



 (3.51) 

Here, a complex mixing of neutral pion ( )0
mπ and charged pions ( )mπ±

 can transform the 

incident neutron into a proton and the incident proton into a neutron.  In the AV18,  

( ) ( )( )

( ) ( ) ( )( )

0

23
2

1 2 122

23
1 2

1 2 122

( )

           

       

1 1 ( ) ( ) ( ) ( )
3 4

2                  1 1 ( ) ( ) ( ) ( )
3 4

s

T

s

v
m cf

pn exp c r Y r S T r Y r
m c

m cf
exp c r Y r S T r Y r

m c

π
π

π
π

π
σ σ

π

σ σ
π

±+

=
 

− − + +  
 

 
− − − +  

 









(3.52) 

represents the complex mixing of charged and neutral pions 

3.2.3. The Neutron-Proton Short Range Potential ( )Rv pn   

 The only real difference between the form of ( )Rv pn and ( )Rv pp rests in the 

constant parameters I, P, Q, and R that are fit to scattering data (Table 3.4), 

 2 2
, , 2 , , , 2

12 ( )
( ) ( ) ( ) ( ) ( ) ( )( )S T S T S T S T S T

R central Tensor L SL L S
v pn v r v r L v r S v r L S v r L S⋅ ⋅

= + + + ⋅ + ⋅  (3.53) 

 , , 2 , , 2 ,( ) ( ) ( ) ( )S T S T S T S T S T
i i i i iv r I T r P rQ r R W rµ µ µ = + + +   (3.54) 

Since T can equal 0 or 1 for the pn interaction, there are four possible combinations, two 

for S=0  
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2

2

0,1 0,1 0,1 2

0,0 0,1 0,0 2

( ) ( ) ( )

( ) ( ) ( )
R central L

R central L

v pn v r v r L

v pn v r v r L

= +

= +
 (3.55) 

 and two for S=1.   

 
2 2

2 2

1,1 1,1 1,1 2 1,1 1,1 1,1 2
12 ( )

1,0 1,0 1,0 2 1,0 1,0 1,0 2
12 ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

R central Tensor L SL L S

R central Tensor L SL L S

v pn v r v r L v r S v r L S v r L S

v pn v r v r L v r S v r L S v r L S
⋅ ⋅

⋅ ⋅

= + + + ⋅ + ⋅

= + + + ⋅ + ⋅
 (3.56) 

 

Table 3.4.  ( )Rv pn Strong Component Constant Parameters of the AV18 Model 

Channel TYPE I MeV P MeV Q MeV R MeV 
S=0, T=1 Central

 -10.66788 3126.5542 1746.4298* 0 
 2L  0.12472 16.780 9.0972* 0 

S=0, T=1 Central
 -2.09971 1204.4301 511.9380* 0 

 2L  -0.31452 217.4559 117.9063* 0 
S=1, T=1 Central -7.62701 1815.5315 966.2483* 1847.8059 

 
2L  0.06709 342.0669 185.4713* -615.2339 

 Tensor 1.07985 0 -190.0949 -811.2040 

 LS  -0.62697 -570.5571 -309.3605* 819.1222 

 2( )LS  0.74129 9.3418 5.0652* -376.4384 

S=1, T=0 Central -8.62770 2605.2682 1459.6345* 441.9733 
 

2L  -0.13201 253.4350 137.4144* -1.0076 

 Tensor 1.485601 0 -1126.8359 370.1324 

 LS  0.10180 86.0658 46.6655* -356.5175 

 2( )LS  0.07357 -217.5791 -117.9731* 18.3935 

 
 

3.3. The AV18 Neutron-Neutron Model 

Since the neutron has an internal structure, it is still subject to electromagnetic, one pion 

exchange, and short-range effects.  This section summarizes these components.  
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3.3.1. The Neutron-Neutron EM Potential, ( )EMv nn  

 The electromagnetic portion of the nn potential only has one component, 

 ( ) ( )EM MMv nn v nn= . (3.57) 

which results from the magnetic moment of the neutron.  This single component of 

( )EMv nn  may be represented by,  

 1 2 123
2

2

( )2
( ) ( )

4 3
t

MM n
n

F r
v F r S

M r
nn δ

α
µ σ σ= − + 

  
 . (3.58) 

As previously mentioned, the observed magnetic moment of the neutron was one of the 

first indications of an underlying particle structure.   

3.3.2. The Neutron-Neutron OPEP, ( )v nnπ   

 For the nn OPEP, the AV18 assumes this solution to be the same as ( )v ppπ  as 

experimental data has shown little variation in the coupling constants below 350 MeV. 

( ) [ ]0

0

22
2 2

1 2 12
1  ( )  1 ( ) ( ) ( ) ( )
3 4 s

mfv nn m c exp c r Y r S T r Y r
c m

π
π π π σ σ

π

   = − − +  
   





 (3.59) 

3.3.3. The Neutron-Neutron Short Range Potential, ( )Rv nn   

 Analogous to ( )Rv pp ,  T=1 for  the nn interaction. Therefore, two potentials are 

possible, one for the S=0,  

 2
0,1 0,1 0,1 2( ) ( ) ( )R central L

v np v r v r L= +  (3.60) 

 and one for S=1.  

 2 2
1,1 1,1 1,1 2 1,1 1,1 1,1 2

12 ( )
( ) ( ) ( ) ( ) ( ) ( )( )R central Tensor L SL L S

v np v r v r L v r S v r L S v r L S⋅ ⋅
= + + + ⋅ + ⋅  (3.61) 
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Here as before, each of the terms of equation (3.61) can be described by equation (3.42) 

with the constants parameters I, P, Q, and R provided in Table 3.5. 

 

Table 3.5. ( )Rv nn Strong Component Constant Parameters of the AV18 model 

Channel TYPE I MeV P MeV Q MeV R MeV 

S=0, T=1 Central
 -11.27028 3342.7664 1857.4367* 0 

 2L  0.12472 16.780 9.0972* 0 

S=1, T=1 Central -7.62701 1811.5710 967.2603* 1847.8059 

 
2L  0.06709 342.0669 185.4713* -615.2339 

 Tensor 1.07985 0 -190.0949 -811.2040 

 LS  -0.62697 -570.5571 -309.3605* 819.1222 

 2( )LS  0.74129 9.3418 5.0652* -376.4384 

 
 

3.4. The Numerov Method 

 ANL typically utilizes the Numerov method to compute AV18 scattering phase 

shifts [5].  This time independent approach is ideally suited to linear second order 

differential equations like the Schrödinger equation, 

 
( )( )

2
2

2

2

( )

2            

k E V r r
r

k

ψ ψ

µ

∂
= −

∂

=


 (3.62) 

which have no first derivative.   Here, V is the AV18 potential, µ is the reduced mass of 

the nucleon pair, and  is Planck’s constant divided by 2π    

 To use this technique, we first perform a Taylor series expansion of ψ at the 

point ( )r h+  
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 ( )
2 3 4

( ) ( ) ( ) ( ) ( ) ....
2 6 24
h h hr h r h r r r rψ ψ ψ ψ ψ ψ′ ′′ ′′′ ′′′′+ = + + + + +  (3.63) 

then perform a separate Taylor series expansion of ψ at the point ( )r h− , 

 ( )
2 3 4

( ) ( ) ( ) ( ) ( ) ....
2 6 24
h h hr h r h r r r rψ ψ ψ ψ ψ ψ′ ′′ ′′′ ′′′′− = − + − + +  (3.64) 

The sum of these two expansions eliminates odd powers of h  and leaves an expression 

for ( )rψ ′′ which includes an undesirable fourth order derivative,  

 
4

6
2

( ) ( ) 2 ( )( ) ( ) ( )
12

r h r h r hr r O h
h

ψ ψ ψψ ψ+ + − −′′ ′′′′= − +  (3.65) 

Here, h  refers to the integration step size and should not be confused with the 

 contained within 2k  in equation (3.62).  In order to reduce this equation into something 

more tractable, we operate on the Schrödinger equation (3.62) with
2 2

21
12
h

r
 ∂

+  ∂ 
 to 

generate terms analogous to the Taylor Series Expansion, 

 
4 2 2

2 2
2( ) ( ) ( ) ( ) 0

12 12
h hr r k r k r

r
ψ ψ ψ ψ∂′′ ′′′′  + + + = ∂

 (3.66) 

and then back substitute into equation (3.65) for 
4

( ) ( )
12
hr rψ ψ′′ ′′′′+ , 

 
4 2

2 2 2 6
2( ) ( ) 2 ( ) ( ) ( ) ( ) 0

12
hr h r h r h k r k r O h

r
ψ ψ ψ ψ ψ∂  + + − − + + + = ∂

 (3.67) 
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 All that remains in equation (3.67) is one lone second derivative, 
2

2
2 ( )k r

r
ψ∂   ∂

 

which is normally reduced to first order through an elementary difference formula 

approximation7

 

, 

( ) ( ) ( )2 2 22
2

2 2

2
( )

k r h k r h k r
k r

r h
ψ ψ ψ

ψ
+ + − −∂   ≈ ∂

 (3.68) 

After some algebra, we arrive at the general form for the Numerov method, 

 ( )
2 2 2 2

6

2 2

5 12 1 ( ) 1 ( )
12 12( ) 11

12

h k r h k r h
r h O h

h k

ψ ψ
ψ

   − − + −   
   + = +

+
 (3.69) 

The Numerov method above is a three point difference formula that computes 

( )r hψ + based on the value of ψ at two previous points ( )rψ  and ( )r hψ − .  Of course to 

start the iterative method, we must first seed a couple of values.  The first point at 

( )r hψ − is given by the boundary condition at 0r = , (0) 0ψ = .  The second point at a 

step h from the origin is considered to be sufficiently small so ( )rψ is only slightly 

greater than zero.  From these two points, ( )r hψ + is determined.  Then, 

( ) ( )r r hψ ψ→ −  and ( ) ( )r h rψ ψ+ → and a new ( )r hψ + can be computed.  The process 

is repeated until ( )rψ is completely determined for a single energy value [64,65].   

                                                 

7 Although this difference approximation has an error of ( )2O h , it has minimal impact on the solution 

since it is multiplied by the much smaller 4h . 
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 Thus far, we have shown how to obtain a solution to the Schrödinger equation via 

the Numerov method but not shown how a phase shift can be obtained from this solution.  

To help motivate the phase shift discussion, consider Figure 3.3.  
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Figure 3.3.  Centripetal Potential centV  and Effective Potential effV  Comparison.  At some point rmax 
the centripetal barrier begins to dominate at arbitrary points r2 and r1 > rmax the solutions the radial 
equation must be a linear combination of free solutions  [64] 

 
 
Here, a centripetal barrier potential centV  and an effective potential effV  including both the 

centripetal potential and one of the AV18 potentials are presented.  Notice at a point 

roughly equal to maxr the centripetal potential begins to dominate.  As r continues to 

increase past maxr , the solution to the radial equation at a point 1 maxr r> must be a linear 

combination of free solutions,  
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 ( ) ( )1 1 11 ( ) cos sinL L L L Lr Akr j kr krψ δ η δ= −    (3.70) 

Here, A is an arbitrary constant, Lδ  is the phase shift, and Lj  and Lη the regular and 

irregular spherical Bessel functions of order L.  We cannot calculate the phase shift from 

the solution at 1r  alone since the equation contains two unknowns.  Calculation of the 

phase shift is facilitated by determining a second solution at a point 2 1r r>  also given by 

the solution to the free radial equation, 

 ( ) ( )2 2 22 ( ) cos sinL L L L Lr Akr j kr krψ δ η δ= −   . (3.71) 

Given the two solutions, 1 ( )L rψ  and 2 ( )L rψ , A can be eliminated through some more 

algebra to obtain an expression for the phase shift at a particular energy, 

 1 1 2

2 1 2

2 ( ) ( ) ( )tan
1 ( ) ( ) ( )

L L L
L

L L L

r r j kr j kr
r r kr kr
ψδ
ψ η η

−
=

−
. (3.72) 

Note that the points 1r  and 2r  are typically chosen to be much farther away from the 

interaction potential than shown in the diagram.  These positions are for illustrative 

purposes only [64, 65]. 

 In order to get a better understanding of how phase shifts are currently obtained 

from the AV18, a separate time independent code was developed to recreate the 

published phase shifts at a 2 MeV energy resolution and coordinate step size, 0.00153 fm.  

A comparison between a phase shift obtained from this time independent code and a 

published phase shift for the 1
0S pn potential8 Figure 3.4 is presented in .   

 
                                                 

8 Plots of this potential may be seen in Chapter 5. 
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Figure 3.4.  ANL and AFIT Numerov 1S0 Phase Shift Comparison.  ANL’s published data is 
represented by circles and the Numerov calculation using the above method is represented by the 
solid line.  The AFIT Numerov code exhibited sensitivity to coordinate step size and required twice as 
long as the CPM technique to complete the same calculation.   

 
 
Throughout this exercise, it was observed that the fidelity of the phase shift produced by 

the Numerov method was inherently sensitive to coordinate step size.  Step sizes greater 

than 0.00153 fm exhibited far greater noise than the present in the plot above.  Plots of 

the same 1
0S  phase shift determined via the channel packet method (chapter 6) had a 

higher energy resolution (2 orders of magnitude lower) and were produced in half the 

time of the Numerov method.  These CPM characteristics are well suited for examining 

phase shifts from many body potentials where sharp scattering resonances are likely to be 

encountered. 
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4. Channel Packet Method Theoretical Background  

 In quantum scattering theory, the scattering operator Ŝ relates the incident reactant 

asymptotic state inψ  to the resultant product asymptotic state outψ , 

 ˆ
out inSψ ψ= . (4.1) 

This unitary, time independent operator contains all information of experimental interest, 

since only asymptotic free motion is observed in the laboratory.  Therefore given Ŝ , 

physical insight into both reactive and non-reactive scattering events can be obtained for 

verification against experimental data [51].    

   The scattering operator, Ŝ , is defined as the product of two isometric Møller 

operators [45, 51,], 

 †Ŝ − +≡ Ω Ω  (4.2) 

where,   

 0
ˆˆˆ lim  

t

iH tiHtexp expγ
± → ∞

   −
Ω =   

   

 

. (4.3) 

Notice that the Møller operator above is essentially a product of time evolution operators; 

one corresponding to the asymptotic Hamiltonian, 0Ĥ  and the other the full 

Hamiltonian, Ĥ .  When the Møller Operator +Ω is applied to some given reactant state 

inψ , the wave packet is propagated backward in time under the asymptotic 

Hamiltonian, 0
ˆ ,H  to an intermediate state at t = −∞ then forward in time under the full 

Hamiltonian back to its initial position at 0t = .  The other Møller Operator −Ω has a 
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similar effect on the product state outψ , first propagating the wave packet forward to 

time t = +∞ then backwards in time back to 0t = .  The action of propagating these wave 

packets to and from the asymptotic limit integrates information about how 0Ĥ is modified 

by Ĥ  into each wave packet prior to interaction.  These new wave packets are designated 

as the reactant and product Møller states, inψ ψ+ += Ω  and outψ ψ− −= Ω , 

respectively.  Throughout the remainder of this section, + subscripts reference the 

reactant wave packet and – subscripts reference to the product wave packet.   

 In order to define these Møller states, it is necessary to first define a useful basis 

set in which to construct the initial reactant and product states inψ  and outψ .  A 

convenient choice is the momentum basis, k .  The usefulness of this choice becomes 

apparent when we consider 0Ĥ in the momentum basis, k  

 
2 2

0 2
kH k k
µ

=
  (4.4) 

Here we have expressed 0Ĥ  in terms of the momentum eigenvalues 
2 2

2
k
µ

  where  is 

Plank’s constant, k is the wave vector conjugate to r, and µ  is the reduced mass.   If we 

apply the Møller operator to these states  

 

2 2 2 2 2 2

0

2 2 2 2 2 2

0

2 2 2

2 2 2

k k kH k k k k

k k kH k k k k

µ µ µ

µ µ µ

+ + + +

− − − −

Ω = Ω = Ω =

Ω = Ω = Ω =

  

  

 (4.5) 

and use the intertwining relation 0H H± ±Ω = Ω  [51], 
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2 2 2 2

2 2 2 2

2 2

2 2

k kH k k k

k kH k k k

µ µ

µ µ

+ + +

− − −

Ω = Ω =

Ω = Ω =

 

 

 (4.6) 

we see that not only do we have a mapping between the eigenbasis k  of 0Ĥ and the 

eigenbasis k+  and k− of Ĥ , but we also see that the eigenvalues between the basis are 

the same. 

 

2 2

0

2 2

2 2

2

2

2

kH k k

kH k k

kH k k

µ

µ

µ

+ +

− −

=

=

=







 (4.7) 

The expansion of the reactant Møller state ψ + and product Møller ψ −  state in the 

momentum basis set k±  have the form, 

 ( ) ( )in k k dk k k dkψ ψ η η
∞ ∞

+ + + + + +
−∞ −∞

= Ω = Ω =∫ ∫ . (4.8) 

 ( ) ( )out k k dk k k dkψ ψ η η
∞ ∞

− − − − − −
−∞ −∞

= Ω = Ω =∫ ∫  (4.9) 

where ( )kη + and ( )kη −  represents the initial expansion coefficients of the product and 

reactant wave packets.   

 With the two Møller states now defined, we are now ready to determine the 

reaction probability S between these two states,  

 † ˆ
out in out inS Sψ ψ ψ ψ ψ ψ− + − += Ω Ω = = . (4.10) 
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To help further develop a usable expression for S in the standard momentum 

representation, consider now the arbitrary state ( )A E+  represented by the Fourier 

transform of the time evolution of the Møller state,  

 ( )'( ) exp exp
i E t iHtA E dt ψ+ +

  − = −   
  

∫
 

 (4.11) 

Since the Hamiltonian can be expressed as an energy, E, and both energies can be 

expressed in wave vector form 
2 2

2
kE
µ

=
  and 

2 2''
2
kE
µ

=
 , we have 

 

2 2

2 2( )  
k ki t

A E dt e µ µ ψ
 
 
 
 

′ −

+ += ∫
 

. (4.12) 

Here, the reactant Møller state ψ + is independent of t, so the time integral has the delta 

function solution,  

 2  
2 2

2 2( ) k kA E π δ µ µ ψ
 
 
 
 
 

=+ +
′ −   (4.13) 

If we substitute in the expansion for ψ +  from equation (4.8) and use two delta function 

identities, 

 ( ) ( )1bx x
b

δ δ=  (4.14) 

 ( ) ( ) ( )2 2 1
2

x x xδ α δ α δ α
α

− = + + −    (4.15) 

we have, 
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 ( ) ( ) ( )' ' ' ' '2( )A E dk k k k k k
k

kπµ η δ δ+ + + +
 = − + − ∫



 (4.16) 

Only two possible solutions for the integral above exist, one for 'k k= +  and one for 

'k k= − .  Therefore,  

 ( ) ( )2( )A E k k
k

k kπµ η η+ + + + + + +
 = + + − + −



. (4.17) 

Here, it is important to remember that the + subscript refers to the reactant state and the – 

subscript refers to the product state since the notation becomes more challenging as we 

proceed further.  The reaction probability then is given by the overlap between the 

evolving reactant state and the stationary product Møller state, 

 ( ) ( ) ( )A E dk k k A tψ η− + +′ ′ ′= ∫  (4.18) 

 ( ) ( )'2( ) ( )A E dk k k k k
k

k kπµψ η η η∗
− + − − + + + + + +

 ′ ′= + + − + −∫


 (4.19) 

 ( ) ( )* ' * '2( ) ( ) ( )A E dk k k k k k k k k
k

πµψ η η η η− + − + + − + − + + − +
 ′ ′ ′= + + + − − ∫



 (4.20) 

Here there also exists degeneracy in 'k  analogous to(4.16) which enables (4.20) to be 

written as the sum of four similar integrals, 

 

( )

( )

( )

*

*

*

2( ) ( )  

2                                     ( )   

2                                      ( )  

                          

A E dk k k k k
k

dk k k k k
k

dk k k k k
k

πµψ η η

πµ η η

πµ η η

− + − − + + − +

− − + + − +

− − + + − +

′= + + + + +

′ + − + − +

′ − + − + +

∫

∫

∫







( )*2            ( )dk k k k k
k

πµ η η− − + + − +′ − − − −∫


 (4.21) 
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The integrals vanish provided the orthogonality relations from Taylor [51], 

 '
' ' ' † '

,
( ) 

k k
k k k S k k k k k Sδ− + − += = Ω Ω = −  (4.22)  

yielding an expression for the S matrix elements in the momentum representation  

 

( )

( )

( )

*
,

*
,

*
,

2( ) ( )  

2                                     ( )  

2                                      ( )  

2                                      

k k

k k

k k

A E k k S
k

k k S
k

k k S
k

k

πµψ η η

πµ η η

πµ η η

πµ η

− + − + + +

− + + −

− + − +

−

= + + +

+ − +

− + +









( )*
,( ) k kk k Sη+ − −− −

 (4.23) 

Here, the sign of the k subscript on S indicates the wave packets direction of travel, either 

toward or away from the interaction region.  Therefore, in the case of the symmetric 

square well, the first two terms would represent the probability of transmission and 

reflection across the well from an incident wave packet from the left, whereas the last two 

terms would represent the probability of transmission and reflection from an incident 

wave packet from the right.    Since only one particular set of matrix elements can be 

determined for each momentum pair, we can express (4.23) is the compact form,   

 
( )

( ) ( ), ( ) ( )
2 ( ) ( )k k

k E
S E A E

k E k E
ψ

πµη η± ± − +∗
− +

=
± ±



, (4.24) 

This is the CPM representation of the S-Matrix [36-38].   

Solutions to equation (4.24) hinge on the numerical evaluation of the inner 

product ( )A Eψ − + , which is given by the Fourier Transform of the correlation function, 

( )C t , between the time evolution of the reactant and stationary product Møller states, 
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ˆ ˆ
( ) ( ) ( )

ˆ
                               ( )

iEt iHtA E exp E exp E dt

iEtExp C t dt

τ

τ

τ

τ

ψ ψ ψ− + − +
−

−

   − −
=   

   
 −

=  
 

∫

∫

 



 (4.25) 

Scattering phase shifts ( )Eδ  are obtained directly from , ( )k kS E± ± if we recall that 

solutions may be expressed in complex polar form9 exp( )iδ as when the scattering matrix 

is diagonal (i.e. no coupling between states),  

 

,

,

Im( )
tan

Re( )
( )

2

k k

k k

S
a

S
Eδ

± ±

± ±

 
  
 =  (4.26) 

 Taylor mentions a few constraints to scattering calculations [51].    The first states 

the potential should be no more singular than r-2 at the origin, a criterion easily met by all 

existing nuclear models.  The second, however, requires the potential decay faster than 

r3at infinity.  This is a clear problem for the long-range Coulombic tail, which governs 

charged nucleon interaction at large r.  Fortunately, a technique for handling the tail 

exists in the literature and an outline of the theory is provided in Section 5.6  

                                                 

9 The scattering matrix is unitary so the r associated with complex polar form is one. 
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5. AV18 CPM Synthesis 

To couple the CPM methodology with the AV18 potential, an appropriate 

coordinate system, basis, Hamiltonian and units system, must be determined.  These 

topics are the subjects of the first four sections of Chapter 5.  Section 5.5 defines the 

relationship between the center-of-mass reference frame and laboratory frame from an 

energy standpoint.  The standard methodology for handling calculation of s-matrix 

elements in the presence of a 1/r potential is reviewed in section 5.6.  Section 5.7 

develops a useful system of units for nuclear scattering.  Section 5.8 gives an overview of  

the two leading parameterizations for the non-diagonal components of the nuclear S-

Matrix.  Finally, this section concludes with a sample problem designed to validate our 

time-dependent CPM technique against a time-independent analytic solution.  

5.1. Coordinate System 

 Since we are considering two nucleons, there are six total degrees of freedom (x1, 

y1, z1, x2, y2, and z2) which must be taken into account.  However, if we move to the space 

fixed center of mass coordinate system (SF-CM) as illustrated in Figure 5.1, the problem 

becomes more tractable.   
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Figure 5.1.  Space Fixed – Center of Mass Coordinates. 

 

In this coordinate system, the aforementioned six degrees of freedom are exchanged for 

six others, three pertaining to the motion of the center of mass (xcm, yxm, zcm) and three 

others that define the orientation of the two bodies around the center of mass ( , , )R θ φ .  

The resulting wave function can thus be treated as the product of two different wave 

functions, 

 ( , , ) ( , , )R CM cm cm cmR x y zψ ψ θ φ ψ= . (5.1) 

R


cmr

x 

y 

z 

zcm 

xcm 

ycm 
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One which specifies the motion of the center of mass through space ( , , )CM cm cm cmx y zψ  

and another which specifies the dynamics of the particles about that center of mass 

( , , )R Rψ θ φ .    This construct provides an advantage.  Since we are only interested in the 

physics associated with scattering dynamics between the nucleons not where in space the 

interaction takes place; CMψ  can be effectively ignored.  Only three coordinates therefore 

need to be considered, R which labels the separation between the nucleons and θ  and φ  

which describe nucleons orientation about the center of mass.   

5.2. The Hamiltonian 

The Hamiltonian utilized by the CPM is expressed using SF-CM coordinates as 

[5], 

 
2 2 2

182

ˆ ˆ ˆˆ ˆ ˆ
2 2 2AV eff

AB AB AB

P L PH V V
Rµ µ µ

= + + = +  (5.2) 

Here, ABµ  represents the reduced mass of the two body system and effV  is the effective 

potential that includes 18
ˆ
AVV  together with the kinetic energy tumbling term 

2

2

ˆ

2 AB

L
Rµ

.  

The radial kinetic energy is given by 
2ˆ

2 AB

P
µ

.   

5.3. Basis 

A convenient basis well suited for representing this Hamiltonian in equation (5.2) 

is a mixed radial coordinate, angular momentum representation labeled with R, the 

distance between the nucleon pair, the total angular momentum J, the total orbital angular 
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momentum L, the total spin S , the total isospin T, the intrinsic spin σ , and isospinτ of 

each particle  

 1 2 1 2        J L S T Rψ σ σ τ τ=  (5.3) 

Since we are dealing with two bodies in the SF-CM coordinate system, quantities are 

independent of M the projection of J onto the space-fixed axis [9].  In this section, we 

examine the 18
ˆ
AVV  scalar products ( 2

1 2 1 2 12, , , ,L S L Sσ σ τ τ⋅ ⋅ ⋅ ) introduced in Section 3.1.3 

in the specified basis above 

 2 1 2 1 1 2 1 2  ˆ          RR T S L J V J L S Tτ τ σ σ σ σ τ τ′ ′ ′ ′ ′ ′ ′ ′ ′  (5.4) 

to develop a useful abbreviated basis     J L S T Rψ = .  Matrix elements are then 

computed to determine the form of the potential in the abbreviated basis set.  From this 

point forward, R’s presence throughout the remainder of this discussion is implied.  

 A convenient way to evaluate the spin scalar product 1 2σ σ⋅  is through the 

examination of the observable 2S in the coupled basis, 

 ( ) ( )
2 2

2 2 2
1 2 1 2 1 22

2 4
S σ σ σ σ σ σ = + = + + ⋅ 

 
   (5.5) 

In this form, we can utilize the Pauli property,  

 2 2 2 2 1 0
3

0 1x y zσ σ σ σ
 

= + + =  
 

 (5.6) 

and the requirement that 2S  must also satisfy  

 2 2( 1)S s S S s= +   (5.7) 

to express the spin scalar product in a more convenient form,  
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 1 2 2 ( 1) 3S Sσ σ⋅ = + − . (5.8) 

Now as we have already seen in Section 3.1.2, the total spin S of the composite system is 

either 1 for the symmetric triplet state or 0 for the anti-symmetric singlet state.  So, the 

spin scalar product 1 2σ σ⋅  in the coupled basis has two possible eigenvalues, [66, 67] 

 1 2

1 2

triplet 1 triplet

singlet 3 singlet

σ σ

σ σ

⋅ =

⋅ = −
 (5.9) 

The isospin scalar product 1 2τ τ⋅  has exactly the same eigenvalues for the coupled triplet 

and singlet states, since the isospin matrices 

 
0 1 0 1 0

      
1 0 0 0 1x y z

i
i

τ τ τ
−     

= = =     −     
 (5.10) 

 are analogous to the Pauli matrices [74] 

 
0 1 0 1 0

      
1 0 0 0 1x y z

i
i

σ σ σ
−     

= = =     −     
 (5.11) 

and the total isospin T for the two nucleon interaction is also 0 or 1.     

 The total angular momentum J is a conserved quantity and is related to the total 

orbital angular momentum, L, and the total spin, S, via the relation,  

 ( )2 2 2 2 2 2J L S L S L S= + = + + ⋅


 (5.12) 

which may be manipulated to obtain an expression L S⋅ as,  

 
2 2 2

2
J L SL S − −

⋅ =  (5.13) 

Since the values for S are restricted to 0 and 1 and 

 J L S= +
 

, (5.14) 
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L can only have possible values of J+1, J or, J-1 in the coupled basis.  The evaluation of 

L2 in the coupled basis follows directly from the eigenvalue equation, 

 2 2( 1)L l L L l= +   (5.15) 

These limitations on L impose restrictions on the size of the potential matrix under 

consideration and are useful in the evaluation of the tensor component 12S . 

The tensor piece 12S  represents the only non-central, off diagonal component of 

the 18AVV  potential.  As discussed in Section 3.1.3, 12S is a combination of the scalar 

quantities 1 2ˆ ˆ( )( )r rσ σ  and 1 2σ σ which are utilized to help describe the observed 

asymmetry of the deuteron wave function.  Wiringa [5] defines the 12S matrix to be,  

 

[ ]

2 1 2 1 12 1 2 1 2

1
' 2

1 1

2 2

           

                              ( 1) 30(2 1)(2 1)(2 ' 1)(2 ' 1)

' 1
' ' ' 2

                                ' 1
2 0 0 0

2'

S J

R T S L J S J L S T R

L S L S

s s
J S L L L

X s s
L S

S S

τ τ σ σ σ σ τ τ

+

′ ′ ′ ′ ′ ′ ′ ′ ′ =

− + + + +

 
   
   
   



( )( )
1 21 1 1 2 2 2                                 ' 'X s s s s τ τσ σ δ






 

 (5.16) 

Here, 9-j Wigner symbol ensures that there is no off-diagonal contribution when 0S = , so 

here we can focus our attention on the 3-J coefficient 
' 2

0 0 0
L L 

 
 

 and 6-J symbol 

' '
2
J S L

L S
 
 
 

when 1S = .  The possible matrix elements for 12S are also limited when 3-J 

coefficient is, 

 31 2
1 2 30       

0 0 0
xx x

if x x x is odd
 

= + + 
 

 (5.17) 
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In this case, the non-repetitive combinations of L and 'L  are reduced to four, 

 

1,  ' 1
1,  ' 1

,       '
1,  ' 1

L J L J
L J L J
L J L J
L J L J

′= + = +
′= + = −
′= =
′= − = −

 (5.18) 

The 3-J coefficient for 1,  ' 1L J L J′= + = +  may be computed using the 3-J formula,  

 ( )
( )( )( )( )

2

1/ 2

2 3 ( 1)2
1

0 (2 1) 2 2 1 2 2 2 3
−  − +   = − − − + + +    

J M M J JJ J
M M J J J J J

 (5.19) 

by making substitutions L L′= =J , 0=M , ' 1S S= = , and  ' 1L L J= = + .  Similarly, 

the 6-J symbol may be computed with the 6-J formula,  

( )

( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )

1/ 2

2 3 1 4 1 1

(2 1) 2 2 1 2 2 2 3 (2 1) 2 2 1 2 2 2 3

1
2

               

                             1 1 1

a b c

Y b b c c
X

b b b b b c c c c c

a b c
c b

Y b b c c a a

+ +

− − + +

− + + + − + + +

 
= − 

 

= + + + − +

(5.20) 

by making the substitutions a J= , 'b S S= = , and ' 1c L L J= = = + .  The remaining 3-J 

coefficients and 6-J symbols can be determined in a similar fashion by using these two 

formulas or others found in the appendices of Edmonds [68].   

 Now given,  

 

( ) ( )1 2

1/ 2 1/ 2 1
1/ 2 1/ 2 1 1/ 9
1 1 2

1/ 2 1/ 2 1/ 2 1/ 2 6σ σ

 
  = 
 
 

= =
 

 (5.21) 
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and the formulas, the matrix elements for 12S are [9, 13],  

 

2 1 2 1 12 1 2 1 2

1/ 2 1/ 2

1/ 2 1/ 2

           

L=J+1 L=J L=J-1
2( 2) 6 ( 1)L=J+1 0
2 1 2 1                                                                 

L=J 0 2 0
6 ( 1) 2( 1)L=J-1 0

2 1 2

R T S L J S J L S T R

J J J
J J

J J J
J J

τ τ σ σ σ σ τ τ′ ′ ′ ′ ′ ′ ′ ′ ′ =

− + +
+ +

+ − −
+ 1

 
 
 
 
 
 
 
 + 

 (5.22) 

Since we are dealing with fermions, the wave function must be anti-symmetric 

under the exchange of like particles to satisfy the Pauli Exclusion Principle.   

 ( ) ( ) 1,  2  2,  1particle particle particle particleψ ψ= −  (5.23) 

In spherical polar coordinates, ψ is a function of ,r ,θ  and ϕ  where r reflects the relative 

separation between the two nucleons and θ  and ϕ  define the orientation of the two 

nucleons in space.  Since the radial distance between the two particles is independent of 

particle exchange, the requirement that the wave function be anti-symmetric must be 

satisfied by θ  and ϕ .  Typically, the angular dependence is described by the spherical 

harmonics , ( , )L MY θ φ , which have a parity of ( )1 L− .  So, even angular momentum 

eigenvalues will contribute to a symmetric wave function whereas odd angular 

momentum eigenvalues will contribute to an anti-symmetric wave function.    

 For nucleons and other particles with spin however, symmetry of the wave 

function is not completely determined by the orbital angular momentum alone, the 



 

63 

 

intrinsic spins of the particles also contribute.  The 1S = state where the nucleon intrinsic 

spins are aligned, 

 
↑↑

↑↓ + ↓↑

↓↓

 (5.24) 

is a symmetric state whereas the 0S =  state where the nucleon spins are aligned 

 ↑↓ − ↓↑  (5.25) 

is an anti-symmetric state.  This implies that in order to produce an anti-symmetric wave 

function either, an even L state must be paired with a 0S = state or an odd L state must be 

paired with a 1S = state.   No such restrictions are imposed on the wave function if the 

interacting pair is a proton and a neutron.   

Having evaluated all of the potential terms, we can now examine the full 

Hamiltonian in the abbreviated     L S J T  basis for a given value of J,  

2ˆ
ˆ ˆ'  '  '  '    '  '  '  '    '  '  '  '    

2 eff
P

L S J T H L S J T L S J T L S J T L S J T V L S J T
µ

= +  (5.26) 

The radial kinetic energy operator matrix elements are diagonal in all of the angular 

momentum quantum numbers but not R due to the derivative, 

 
2 2

' ' '2

ˆ 1'  '  '  '    ( ')
2 2 L L S S T T

AB

PL S J T L S J T R R R
R R

δ δ δ δ
µ µ

− ∂
= −

∂
  (5.27) 

while the effective potential is diagonal except when 1L J= ±  and ' 1L J=  as shown in 

Figure 5.2.   
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1
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Figure 5.2.  Evaluation of the Potential in the LSTJR Basis 

 

Here, non-zero matrix elements on the diagonal are labeled using spectroscopic notation, 

where the elements have the form, 2 1S
JL+ .  The off diagonal elements are labeled Jε  and 

refer to the mixing parameter that couples the L=J-1 and the L=J+1 states.  The matrix is 

only fully populated as depicted above if the interacting pair is a proton and a neutron.  If 

in the event the interacting pair is two protons or two neutrons, then only those elements 

highlighted in red will be allowed due to the Pauli Exclusion Principle.   

Figure 5.3 and Figure 5.4  illustrate how some of the 18AVV  potentials are modified 

with and without inclusion of a kinetic energy tumbling term 
2

2

ˆ

2 AB

L
Rµ

 in the selected 

basis.   
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Figure 5.3.  Sample AV18 Potentials without Centrifugal Correction 
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Figure 5.4.  Sample AV18 Potentials with Centrifugal Correction  
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From a simple analysis of the potentials, we can gain some physical insight about the 

problem.  As shown, the angular momentum component quickly dominates at small r.  

This implies three things.  One, resonant features such as multiple peaks in the scattered 

wave packet should not be expected since there is little evidence of secondary wells in 

any of the plots.   Two, phase shifts should have negative slopes at low L and become 

positive as L increases.  A particle accelerates entering a well yielding a negative phase 

shift whereas a barrier retards it, producing a positive phase shift.  Finally, since the 

ability to access regions defined by the potential diminishes as the angular momentum 

increases, values of 5J ≥ should contribute minimally to the over determination of the 

scattering cross section.  As a result, values of 5J >  do not need to be calculated.      

5.4. Coupled Basis Digitalization 

 As shown in the previous section, the Hamiltonian kinetic energy matrix is 

diagonal in the chosen    L S J T basis whereas the AV18 potential is block diagonal 

(Figure 5.2).  This mixing of states in the potential, such as between 0,1,1,0  

and 2,1,1,0  couples the wave function from one surface to the other.  However, it 

complicates the Fourier transform of the correlation function ( )C t  from equation (4.25), 

 
ˆ

( ) ( ) ( )iEtF E A t Exp C t dt
τ

τ

ψ − +
−

 −
= =  

 
∫



 (5.28) 

since exponentiation of a non-diagonal matrix requires additional computational effort.    

A useful technique for dealing with an unwieldy adiabatic matrix is to perform a unitary 



 

67 

 

Adiabatic Coordinate 
Representation 

Diabatic Momentum 
Representation 

Adiabatic Coordinate 
Representation 

transformation to an appropriate diabatic10

T̂

 basis where the potential is diagonal.  

Although, this operation greatly simplifies the exponentiation, there is a problem.  The 

diagonal representation of the potential operator is not the diagonal representation for the 

kinetic energy operator.  So, the same unitary matrix must be applied to recover the 

original potential’s adiabatic representation prior to performing the DFT and the kinetic 

energy operator, .  Since, no coupling will occur between surfaces in the diabatic basis, 

we must transform back to the adiabatic basis and then repeat the process. Equation 

(5.29) summarizes the process and identifies when a unitary transformations, U, are 

required [36-40]. 

 

†( , ) exp exp ( , )
2 2k x x k

iV t iT t iV tx t t U FFT FFT U x tψ ψ→ →

∆ ∆ ∆     + ∆ = − − −            

 (5.29) 

 

                                                 

10 In quantum mechanics, “adiabatic” refers to a situation where a system 

undergoes a gradual change, which leaves the eigenstates unaffected.  As an example, 

consider the simple harmonic oscillations of a pendulum.  An “adiabatic” change to the 

oscillation would occur if the support is moved slowly enough to allow the system to 

adapt leaving the motion unperturbed [25]. 
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5.5. Energy in the Center of Mass Frame and Lab Frame 

 Our phase shift calculations are performed in the SF-CM frame whereas 

published data are generally presented in the laboratory frame.  In order to compare our 

phase shifts to published data, we need to understand how to convert from one frame to 

the other.  This section investigates the relationship between the two reference frames.  

Consider the following pictorial diagram of the center of mass and laboratory for a 

simple 1-D scattering experiment.   

θ
φ

ζ

'
1 1m v '

2 2m v 1 1m v

2 2m u

1 1m u

'
2 2m u

'
1 1m u

θ
φ

ζ

'
1 1m v '

2 2m v 1 1m v

2 2m u

1 1m u

'
2 2m u

'
1 1m u

 

Figure 5.5.  Center of Mass vs. Laboratory Frame 

 

Here, primes label the center of mass frame, v  label pre-collision velocities, and u  labels 

post collision velocities.  Vectors 1r
  and 2r

  (not shown) connect the positions of the 

particles to the origin whereas the vector, 

 ( )1 1 2 2
1 2

1
CMR m r m r

m m
= +

+



   (5.30) 

connects the origin to the center of mass of the system.  Using definition (5.30) above, we 

can write the momentum between the two systems as,  

 ( )1 1 2 2CMMV m v m v= +


   (5.31) 
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where M has been used to label the total system mass 1 2M m m= + .  Since the velocity of 

2m  in equation (5.31) prior to collision in the lab frame is zero, a relationship between 

CMV


and 1v in terms of masses of the particles can be established 

 1
12CM

mV v
M

=


 . (5.32) 

Now if we consider the kinetic energy of each system prior to interaction, 

 

2

2
1 1

1
2
1
2

CM CM

Lab

E MV

E m v

=

=
 (5.33) 

we can substitute equation (5.32) into (5.33) for CMV


 and arrive at a relationship between 

the center of mass energy and laboratory frame energy given by, 

 1 2

2
Lab CM

m mE E
m
+

=  (5.34) 

Since the mass of the proton is approximately the mass of the neutron, about a factor of 

two in energy exists between the two reference frames.  As the mass of the target particle 

increases, CME approaches LabE [70]. 

5.6. The 1/r Potential  

 The Scattering Matrix developed in Section 4 was only defined for potentials, 

which decay at a rate of 2

1
r

or better.  This presents a problem for numerical calculations 

since a large number of scattering processes, including the pp interaction of interest 
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here11 1
r

, involve the Coulombic potential which decays at a rate of .  As r approaches 

infinity, the potential still influences particle motion violating the boundary condition that 

the wave function be stationary in the asymptotic limit.   An outline of Taylor’s [51] 

methodology for dealing with the Coulombic tail quandary is summarized here [30, 71-

73].   

 The premise of the solution rests on the awareness that pure Coulombic potentials 

do not exist in nature.  At some distance, other charged particles effectively “screen” the 

original Coulombic interaction between two particles, suggesting an appropriate way to 

handle the “well-behaved” potential is to impose some form of cutoff condition.  For this 

discussion, we begin with the radial component of Schrödinger’s equation,  

 
2

2
2 2 2

( 1) 2 ( ) ( ) 0d L L V r k u r
dr r

µ +
− − + = 

 

 (5.35) 

where we have used by using the standard convention 2
2

2 Ek µ
=


.  Here,   is Plank’s 

constant, E is the total energy of the two-particle system, L refers to a particular value of 

angular momentum, and µ  is the reduced mass.  Before proceeding to discuss the 

specifics surrounding the phase shifts induced by the Coulombic or strong force, it is 

useful to consider asymptotic free motion.   

                                                 

11 ( )EMv pp  of equation (2.4) 
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5.6.1. Asymptotic Free Motion 

 Under the asymptotic free motion assumption, V(r) and 2

( 1)L L
r

+ are both set to 

zero and the radial equation, 

 
2

2
2 ( ) 0d k u r

dr
 

+ = 
 

 (5.36) 

has a solution which is a linear combination of sin( )kr  and cos( )kr  

 ( ) sin( ) cos( )u r A kr B kr= +  (5.37) 

where A and B are arbitrary constants.  Given that the boundary conditions at 0r =  

requires 0B = , the free solution at large r must be proportional to, 

 ( ) sin( )u r A kr  (5.38) 

5.6.2. The Method of Partial Waves  

 The potentials of interest here are all central in nature and depend on the relative 

distance r and the angular momentum L that is a constant of the motion.  In these cases, it 

is useful to express the wave function as a product of radial and angular parts and then 

sum over the contributions of angular momentum L,  

 ( ) ,0
0

, ( ) ( )L L L
L

r a R r Yψ θ θ
∞

=

= ∑  (5.39) 

Here, coefficient La refers to the amplitude of each partial wave and ,0 ( )LY θ  refers to the 

spherical harmonics which are independent of azimuthal angle.  To help understand why 

the use of partial waves is particularly useful to nuclear scattering, we will examine the 

impact parameter b.   
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 From classical mechanics, we know that the impact parameter b is defined as the 

perpendicular distance from the center of force to the velocity vector of the incident 

particle.  The impact parameter b can be expressed in terms of the incident particle’s 

momentum vµ  and the classical angular momentum l through the relation,  

 lb
vµ

=  (5.40) 

Scatter for higher values of angular momentum are only possible if the impact parameter 

is less than the range of the potential energy between the two particles [70].   

 This same concept can be made applicable to quantum mechanics by exchanging 

the angular momentum l with the eigenvalues of the momentum operator L̂  and 

expressing the momentum in wave vector form as p k=  , 

 

2

( 1)
2

L Lb
Eµ

+
=



 (5.41) 

Here we have chosen to express the wave vector k in terms of energy 2

2 Ek µ
=



  to 

make clear the relationship between impact parameter and the energy of the system.  

Since angular momentum in quantum mechanics can only assume discrete values, we can 

readily determine the number of partial waves, which may interact with a finite range 

potential.  In Figure 5.6, the horizontal dotted line represents the range of nuclear 

potential and the curved lines represent the impact parameter ( )b E  for the first five 

values of angular momentum.  An angular momentum value of zero represents a head on 

collision between the two particles is not shown.  From the diagram, it is clear that partial 
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waves of 4L >  contribute minimally to wave function in equation(5.39) and do not need 

to be calculated [30, 66, 74, 75].    

 

 

Figure 5.6.  Impact Parameters and the Range of the Nuclear Force Range (dotted line) 

 
 

 So now, let us relax our initial asymptotic assumption and allow contributions 

from 2

( 1)L L
r

+  into the radial equation,  

 
2

2
2 2

( 1) ( ) 0L
d L L k u r
dr r

 +
− + = 

 
 (5.42) 

If we non-dimensionalize the radial equation by performing a change of variables 

to krρ = , we obtain the familiar form of Bessel’s differential equation,  
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2

2 2
2 ( 1) ( ) 0L

d L L u
d

ρ ρ ρ
ρ

 
+ − + = 

 
 (5.43) 

This solution is a linear combination of regular spherical ( )Lj ρ and irregular spherical 

functions ( )Ln ρ .   

 ( ) ( ) ( )L L L L Lu A j B nρ ρ ρ= +  (5.44) 

As in the asymptotic free case, the irregular solution ( )Ln ρ is eliminated through 

application of the boundary condition (0) 0Lu =  leaving,  

 ( ) ( )L L Lu A jρ ρ=  (5.45) 

and an asymptotically form, 

 1( ) sin
2L
Lu πρ ρ

ρ
 − 
 

  (5.46) 

The inclusion of additional terms in the argument of the sine function suggests that the 

effect of introducing a potential into the radial equation is to induce a shift in phase in the 

solution for large r.    

5.6.3. The Coulomb Potential 

 Having discussed the asymptotic free solution and the method of partial waves, 

we now consider inclusion of the Coulombic potential,  

 
2

0

( )
4

eV r
rπε

= . (5.47) 

into the radial equation, 

 
2 2

2
2 2

0

( 1) 2 ( ) 0
4 L

d L L e k u r
dr r r

µ
πε

 +
− − + = 

 

 (5.48) 
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Here, 0ε  labels the permittivity of free space and e labels the fundamental charge of the 

electron.  As we desire to present the Coulombic wave equation in a more compact form, 

it is useful to perform the same change of variables from the previous section krρ =  and 

make the substitution
2

04
e

k
µγ
πε

=


, 

 
22

2 2

2 ( 1)1 ( ) 0L
d L L u

d
γ ρ

ρ ρ ρ
 +

+ − − = 
 

 (5.49) 

Abramowitz and Stegun [76] give the solution to this equation for positive ρ , positive 

integer values of L, and η−∞ < < ∞ as a linear combination of the regular and irregular 

logarithmic hyper-geometric functions ( , )LF γ ρ  and ( , )LG γ ρ , 

 ( ) ( , ) ( , )L L L L Lu A F B Gρ γ ρ γ ρ= +  (5.50) 

which have the asymptotic property,   

 
( )

( )

( , ) sin ln 2
2

( , ) cos ln 2
2

C
L L

C
L L

LF kp

LG kp

ρ

ρ

πγ ρ ρ δ γ

πγ ρ ρ δ γ

→∞

→∞

 − + − 
 
 − + − 
 





 (5.51) 

For the pure Coulombic potential, the boundary condition at 0r = requires 0LB = .  In 

equation (5.51) we see two new terms, C
Lδ  and ( )ln 2kpγ  as arguments of the sine and 

cosine functions.  The first, C
Lδ is the actual Coulomb phase shift for the thL  partial wave, 

 arg ( 1 )C
L L iδ γ= Γ + +  (5.52) 

and the other ( )ln 2kpγ is a Coulomb cutoff phase correction designed to compensate for 

the infinite range of the nuclear force where p=r is the cutoff radius.   The rationale 



 

76 

 

behind imposing a cutoff condition becomes clear when we consider that pure Coulombic 

potentials do not exist in nature.  At some point, the Coulombic potential between two 

bodies is effectively screened by a Coulombic potential of another charged particle.  For 

example in the classic Rutherford scattering experiment, the Coulomb field from gold 

nuclei was completely shielded by atomic electrons after a few angstroms [51].  Since 

now imposing a cutoff condition seems reasonable, the question remains at which point 

do we impose the cutoff.  The answer is that the cutoff point is somewhat arbitrary as 

Figure 5.7 shows.    

  

cutoff = 1E15 [fm]
cutoff = 1E5   [fm]
cutoff = 1E4   [fm]
cutoff = 140   [fm]

cutoff = 1E15 [fm]
cutoff = 1E5   [fm]
cutoff = 1E4   [fm]
cutoff = 140   [fm]

 

Figure 5.7.  Coulombic Phase Corrections at 140 fm, 1000 fm, 10000 fm, and 1m.  Coulombic 
corrections to the phase shifts do not vary greatly over small variations in r. 

 

Coulombic phase corrections simply do not vary greatly with small variations in r .  So 

here, we make the convenient choice of the 18AVV  cutoff point of p = 140 fm.   
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5.6.4. The Coulomb Plus Short Range Potential 

 In the last section, we considered scattering from a pure Coulombic potential.  

Now we wish to examine the implications of adding a short-range potential ( )SRV r to the 

Coulombic term, 

 
2

0

( ) ( )
4 SR

eV r V r
rπε

= + . (5.53) 

Since we are adding a short-range potential to the Coulombic potential, we would expect 

the solution would appear as a small perturbation to the Coulombic solution.  A useful 

way of representing this perturbation is to admit contributions from ( , )LG ργ ρ →∞  into the 

asymptotic solution,   

 ( ) ( )( ) sin cosu A Bθ θ θ+  (5.54) 

Here we have made the substitution ( )ln 2
2

C
L

L kpπθ ρ δ γ= − + − .  Equation (5.54) can be 

written in terms of exponentials  

 
( ) ( )

( )
2 2

i i i iAe Ae Be Be
u

i

θ θ θ θ

θ
− −− +

+  (5.55) 

converted to polar form with magnitude 1/ 2A iB±  and phase 1tan B
A

ν −  =  
 

 to yield 

 
1/ 2 1/ 2

( )
2 2

i i i iA iB e e A iB e e
u

i i

ν θ ν θ

θ
− −+ −

+  (5.56) 

Since the scattering matrix is unitary, the magnitudes above are one and we have, 

 
( ) ( )

( ) sin( )
2

i ie eu
i

θ ν θ ν

θ θ ν
+ − +−

+   (5.57) 
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This implies that the asymptotic solution for a Coulombic potential modified by a short-

range potential has the asymptotic form, 

 ( )( , ) sin ln 2
2

C
L L L

Lu kpρ
πγ ρ ρ δ γ ν→∞

 − + − + 
 

  (5.58) 

and overall phase shift Lδ is given by 

 ( )ln 2C
L L Lkpδ δ γ ν= − +  (5.59) 

The term Lν  represents the additional phase shifts introduced by all short-range forces 

and should not be confused with the phase shift due to short-range forces alone [51].  For 

pp scattering, Lν , the phase shift from the short range forces alone, is reported.  In order 

to obtain the computed pp short-range phase shift, Lν , for comparison to published data, a 

correction must be applied to the total phase shift Lδ obtained from our nuclear CPM pp 

calculations,  

 ln(2 )C
L L L kpν δ δ γ= − +  (5.60) 

5.7. Nuclear Units 

In order to perform channel packet method calculations, a system of units must be 

defined.  As all previous calculations utilizing the CPM have been performed on the 

Atomic Level, the traditional choice of units were the atomic units (See Table 5.1)  
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Table 5.1.  Selected Atomic Units 

 Designation MKS Equivalent 
Length a0 5.291772x10-11 [meters] 
Mass me 9.105953x10-31 [kg] 

Angular Momentum 
  1.054571x10-34 [J] [sec] 

Energy EH 4.359744x10-18 [J] 
Time / HE  2.418884x10-17 [sec] 

 
 

where the unit of length is based on the Bohr Radius, the unit of mass on the rest mass of 

the electron, angular momenta are measured in units of  and the unit of energy is the 

hartree (27.211 eV); twice the ionization energy of the hydrogen ground state electron.   

The atomic unit of time is a derived quantity based on  and the hartree.   These 

traditional units are ill suited for nuclear calculations since both the masses and energies 

involved are several orders of magnitude larger than those encountered in an atomic 

calculation.   

 In order to form a set of units, three base units must be considered, mass, length 

and time.  The dimensions of the nuclear potential give insight to a natural unit selection.  

Width is measured in femtometers (fm) and the depth is measured in MeV.  If we trade 

the mass for energy, we have only one more parameter to fix.  Employing the useful 

atomic convention of setting  to one, the nuclear unit of time may be derived from the 

uncertainty relation,   

 1E t∆ ≤ =  (5.61) 

The nuclear unit of mass may then be obtained from our definition time, length and 

energy.  Conversion factors between MKS and our derived units are included in Table 5.2 

and values for nuclear masses are included in Table 5.3.   
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Table 5.2.  Nuclear Units 
 Designation MKS Equivalent 

Length fm 1x10-15 [meter] 

Mass mν  6.941x10-26 [kg] 

Angular Momentum   1.054571x10-34 [J] [sec] 

Energy MeV 1.602x10-13 [J] 

Time / MeVντ =  6.582 x 10-22 [sec] 

 

 
Table 5.3.  Nuclear Masses 

 Designation Value 
Neutron Mass mn 0.02412982 mν  
Proton Mass mp 0.02409661 mν  

Neutron-Proton Reduced Mass µpn 0.01205660 mν  
Neutron-Neutron Reduced Mass µnn 0.01206491 mν  
Proton - Proton Reduced Mass

 µpp 0.01204830 mν
 

  

5.8. S-Matrix Parameterizations 

 As we saw in the matrix representation of effV back in Figure 5.2, a mixing 

between two states of different orbital angular momenta is possible in the L,S,J,T,R  

basis.   The first mixing between the 3
1S  and 3

1D  states is shown in Figure 5.8. 
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Figure 5.8.  Mixing Between 3
1S  and 3

1D States 
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The S-Matrix associated with this 2x2 block will also be a 2x2 since there is a possibility 

of transition from 3
1S  to 3

1D  and from 3
1D  to 3

1S  in addition to the possibility of 

reflection back into original states.  Although many parameterizations of this 2x2 S-

matrix block could exist, only two are repeatedly found in the literature; the Stapp, 

Ypsilatis, and Metropolis “bar” [18] and the Blatt/Biedenham “eigen” [14] 

parameterizations.   

 Blatt and Biedenham proposed viewing the symmetric 2x2 matrix in its most 

natural eigen-basis form,   

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

2

2

cos sin cos sin0

sin cos sin cos0

l j

l j

i
j j j j

i
j j j j

e
S

e

δ

δ

ε ε ε ε

ε ε ε ε

= +

= −

   −  
   =      −    

 (5.62) 

 
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

1 1 1 1

1 1 1 1

2 2 2 22 2

2 2 2 22 2

cos sin cos sin

cos sin cos sin

l j l j l j l j

l j l j l j l j

i i i i
j j j j

i i i i
j j j j

e e e e
S

e e e e

δ δ δ δ

δ δ δ δ

ε ε ε ε

ε ε ε ε

= + = − = − = +

= − = + = − = +

 + −
 =   − − + 

 (5.63) 

This unitary transformation can be thought of as a series of rotations where U is a 

function of the mixing parameter, jε  and δ are the phase shifts of the eigen-state 

associated with a specific J state.  Although on the surface it would seem to be the most 

natural basis for presenting the phase shift information, difficulties exist in separating the 

Coulombic and strong contributions for the pp triplet state.  Thus, most phase-shift 

analyses are performed with the “barred” parameterization, 

 
( ) ( )
( ) ( )

1 1

1 1

cos 2 sin 20 0

sin 2 cos 20 0

l j l j

l j l j

i i
j j

i i
j j

ie e
S

ie e

δ δ

δ δ

ε ε

ε ε

= − = −

= + = +

    
    =

    −    
 (5.64) 
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( ) ( ) ( )

( ) ( ) ( )

1 11

1 1 1

2

2

cos 2 sin 2

sin 2 cos 2

l j l jl j

l j l j l j

ii
j j

i i
j j

e i e
S

i e e

δ δδ

δ δ δ

ε ε

ε ε

= − = += −

= − = + = +

+

+

 
 =   
 

. (5.65) 

where the three parameters, 1 1, ,  and l j l j jδ δ ε= − = − , are the parameters that are generally 

reported.   Since the unbarred phase shifts are required in the determination of the total 

cross section, the following transformations between representations are often useful, 

 ( ) ( )
( )

( ) ( )
( )

1 1 1 1

1 1

1 1

tan 2
sin

tan 2

sin 2
sin

sin 2

l j l j l j l j

j
l j l j

j

j
l j l j

j

δ δ δ δ

ε
δ δ

ε

ε
δ δ

ε

= − = + = − = +

= − = +

= − = +

+ = +

− =

− =

 (5.66) 

5.9. 1-D Sample Calculation – Square Well Potential 

 It is often useful to first calculate and validate a new technique against a problem 

that has a known analytic solution.  In this case we use an asymmetric square well of 

roughly the same dimensions as the actual nuclear potentials under investigation (Figure 

5.9).   This test verifies operation of all CPM modules except the 2x2 module.  Section 

5.9.1 will first develop the general form for an analytic solution for a square well of 

arbitrary dimensions then apply the formalism to the test case.  Section 4.9.2 will develop 

the analogous CPM solution.  Results are compared in section 4.9.3.   

 
3000 MeV if x  0.65 fm 

( ) 0       MeV if x  >  1.65 fm
-100  MeV            otherwise

V x
≤ 

 =  
 
 

 (5.67) 
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Figure 5.9.  Square Well Approximation to 1S0 Potential.  The dimensions of the well were adjusted 
to the 1S0 potential to provide a method of validating the Channel Packet Method algorithm against a 
known solution prior to propagating  with actual AV18 model.  

 

5.9.1. Analytic Solution 

 Consider the following generic square well problem,  

 
I

II

III

V  if x  a Region I 
( ) V  if a  b Region II

  Region IIIV  if b  
V x x

x

〈 
 = ≤ ≤ 
 〈 

 (5.68) 



 

84 

 

 

Figure 5.10.  1-D Square Well Schematic Diagram 

 
 

Here, solutions to the time independent Schrödinger’s equation, ˆ ˆ ˆ ˆ( )H T V Eψ ψ ψ= + = , 

for each region are given by, 

 [ ] [ ]R R| ( )R R Rx x A exp ik x B exp ik xψ ψ= = + − , (5.69) 

 

where,  

 2

2 ( )R
R

E V
k

µ −
=



, (5.70) 

and R refers to regions I, II, or III.  Since the Schrödinger’s equation is a second order 

differential equation, continuity must exist at the boundary between regions I/II and 

regions II/III for both ψ  and its first derivative.  Thus, we have the pair of transfer 

matrices.   

 ,
I II II

I II II

I II

A A A
M

B B B

α β

β α∗ ∗
= =

      
            

 (5.71) 

VI VIII VII 

x = a x = b 

Region I Region III Region II 

well-width = b-a 
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 ,
III II II

III II II

II III

A A Ac d
M

B B Bc d∗ ∗
= =

      
            

 (5.72) 

where 

 ( )1 21 exp  ( 2 1)
2 1

k a k k
k

α ι = + − 
 

 (5.73) 

 ( )1 21 exp  ( 2 1)
2 1

k a k k
k

β ι = − − + 
 

 (5.74) 

 ( )1 31 exp  ( 3 2)
2 2

kc b k k
k

ι = + − 
 

 (5.75) 

 ( )1 31 exp  ( 3 2)
2 2

kd b k k
k

ι = − − + 
 

 (5.76) 

These matrices can be combined; eliminating two of the six unknown coefficients to 

create a scattering matrix between regions I/III, 

 
11 12

21 22

I I

III III

B S S A

A S S B

    
    =
    
    

 (5.77) 

where the components of S are expressed in terms of , , ,  and c dα β and AI (BIII) refers to 

the incident amplitude from the left (right) and AIII  (BI) refers to the outgoing amplitude 

AIII  to the left (right).    

 Now if we select our incident wave packet to be incident from the right, AI is zero 

and only two scattering matrix elements must be considered; the transmitted amplitude to 

the left, S12 and reflected amplitude to the right S22,   

 12
( )( ) ( )( )

( )
c d ac d d c d cS

c d
α β β α β α β

α β

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

+ + − + +
=

+
 (5.78) 
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 22
( )
( )

d cS
c d

α β
α β

∗

∗

+
= −

+
, (5.79).    

So far, the discussion has been limited to the generic square well.  Our asymmetric square 

well approximation for the nuclear well from Figure 5.9, however, has a barrier.  Here, 

the potential, 1V , at x a=  is considered to be sufficiently large enough to minimize 

transmission.  12S is zero.  With only one remaining element to consider, the 

determination of the reflected analytical phase shift is straightforward via application of 

equation (5.79), 

 
22

22

22

( )tan
( )

2analytic

im S
re S

δ

 
 
 =  (5.80) 

where, 

 ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 1 3 2 2 1 3 2

2 1 2 3 2 1 3 2

2 1 2 3 1 2 2 3
22

2 1 2 3 2 1 3 2

ia k k ib k k ia k k ib k k

ia k k ib k k ia k k ib k k

k k k k e k k k k e
S

k k k k e k k k k e

− − + − + − −

− − − − + + +

+ − + − +
=

+ + + − −
 (5.81) 

5.9.2. CPM Solution 

 For CPM calculations, a useful choice is a complex Gaussian for ( )in outψ   

 

1/ 4 22
1 0

0 02 2
0 0

2 2

2
0

( )( , ) ( )
2 4

         1+ ,        
2 2

x xx t Exp ik x x i t
x x

i t k
x

ζψ ζ ω
π

ζ ω
µ µ

−
−    − −

= + − −    ∆ ∆    

= =
∆
 

 (5.82) 

because it is simple in form and can be analytically propagated.  Since CPM calculations 

involve both the coordinate and momentum spaces, choosing this form provides an 

analytic means of verifying numerical propagation techniques in the absence of an 
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interaction potential.  In the above equation, t labels to time,  labels Plank’s constant, 

µ labels the reduced mass of the two nucleons, k labels the wave vector, 0x  labels the 

initial packet position, k0 labels the initial momentum, and 2
0x∆  labels the wave-packet 

spread.    

 Although any position on the coordinate grid may be chosen for the initial 

complex Gaussian product (reactant) wave-packets, we choose to center both wave-

packets peaks, designated x10 and x20 respectively, at 30 fm as shown in Figure 5.11 and 

proceed to find optimal values for the wave-packets propagation. 
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Figure 5.11.  Scaled Wave Packets at t=0 in Coordinate Representation. 

 

If we consider the time-independent form of equation (5.82),   
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1/4 2

0
0 02 2

0 0

( )1( ,0) ( )
2 4

x xx Exp ik x x
x x

ψ
π

    − −
= + −    ∆ ∆    

 (5.83) 

and its momentum space complement,  

 ( )
1/42

2 20
0 0 0

2( ,0) ( )xk Exp x k k ikxϕ
π

 ∆  = −∆ − +    
 (5.84) 

it is evident that a decrease in coordinate space wave-packet’s spread, x∆ ,corresponds to 

an increase in momentum space wave-packets spread.  Equations (5.83) and (5.84) were 

plotted using x∆ values of 2.474 fm, 1.814 fm, and 1.154 fm to help identify an 

appropriate choice for x∆ given our chosen 1600 fm coordinate space and our desired 0-

400 MeV energy range.  These are shown in Figure 5.12. 
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Figure 5.12.  The Coordinate Representation (top frame) and Momentum Representation (bottom 
frame) of the Same Three Wave Packets.  A decrease in coordinate space wave packet spread 
constitutes an increase in the wave packet spread in the momentum space complementary wave 
packet.  Both representations must be monitored to ensure the wave packets fit on the available grid 
space. 
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For a x∆ of 2.474 fm, the wave-packet amplitude tends to zero at k values of 

approximately -2.0 [1/fm] and -0.5 [1/fm].  The effective energy range may be estimated 

from these k values and the reduced mass, µ , of the interacting pair via,  

 
2 2

2
kE
µ

=
 . (5.85) 

So for this particular choice of x∆ , an effective energy range between 20 MeV and 330 

MeV is obtained.  Although this is a perfectly acceptable selection, what is desired is a 

slightly wider energy range.  So, a narrower x∆  would be a better choice.   

 Now, consider x∆ of 1.154 fm.  Figure 5.12 illustrates two problems with this 

choice.  The first, rather obvious, problem is that the wave-packet does not fit on the 

selected grid space.  The second is a little more subtle.  Note that the right side of the 

wave-packet tends to zero past the point of zero momentum in the positive momentum 

region.  Since this wave-packet contains both positive and negative momentum 

components, the wave-packet will split.  The negative components will probe the 

potential whereas the positive components will leave the interaction region.  In other 

words, the reflection amplitude of the S-matrix elements will no longer be one and the 

information necessary to compute the correct phase shift will be lost.  Here,  the most 

useful choice for x∆ is 1.814 fm as it both fits on the grid space and has an energy range 

from about 5 MeV to about 420 MeV. The remaining parameters pertaining to this 

calculation are summarized in Table 5.4. 
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Table 5.4.  1-D Scattering Parameters 

Parameter Quantity Units 

Mass 0.01201 mν  
x max 1600 fm 

k max 2.56 1/ fm 

Coordinate Points 213  

Coordinate Step Size 0.195 fm 

maxτ  20 
ντ  

Temporal Points 218  

Time Step 7.63x10-5 
ντ  

Initial Coordinate Reactant Wave-Packet Position ( 01x ) 30 fm 

Initial Coordinate Product Wave-Packet Position ( 02x ) 30 fm 

Initial Reactant Momentum ( 01k ) −1.253 1/ fm 

Initial Product Momentum ( 01k ) 1.253 1/ fm 

Packet Spread ( x∆ ) 1.814 fm 

 

 

Since no portion of the wave-packet resides within the potential, the requirement to first 

propagate the wave-packets to the asymptotic limit under the channel asymptotic 

Hamiltonian and back under the full channel Hamiltonian is eliminated.  For this 

problem, these are our Møller states of equation (4.8).   

To calculate S-Matrix elements, a FORTRAN wave-packet propagation code was 

developed.   Snapshots of the reactant wave-packet’s time evolution are provided in 

Figure 5.13- Figure 5.16 with absolute values shown for clarity.   
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Figure 5.13.  Scaled Evolving Wave Packet at 0.122 ντ .  The evolving wave packet has left its initial 
position and has traversed half the distance to square well.  Absolute Values are Plotted  
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Figure 5.14.  Wave Packet Propagation at 0.244 ντ .  The evolving wave packet has begun interacting 
with the square well.  No evidence of bifurcation is present.  
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Figure 5.15.  Wave Packet Propagation at 0.366 ντ .  The higher energy components of the wave 
packet have left the interaction region and are returning to the initial position so that the correlation 
with the product wave packet may be computed. 
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Figure 5.16.  Wave Packet Propagation at 0.977.  With the exception of the lowest energy 
components, the wave packet has all but left the interaction region.   



 

94 

 

In the first frame, the wave-packet peak has advanced under the full Hamiltonian 

from t=0 approximately 13 fm toward the potential.  At this point, no useful data has 

been collected as the wave-packet has not yet entered the interaction region.  By the 

second frame (0.244 ντ ), the higher momentum components of the wave packet have 

reached the interaction region and collided with the barrier. Here, the total energy within 

the well area climbs as kinetic energy is exchanged for potential energy.  No evidence of 

bifurcation is apparent.  Later at 0.366 ντ , the wave-packet after collision is shown 

beginning to exit the area having collected information about the potential.  At each time 

step, the correlation function ( )C t  is determined by taking the scalar product between the 

evolving wave-packet and the product Møller state.  By 0.977 ντ (Figure 5.16), the 

calculation is essentially complete as all but the lower momentum components have 

exited.   

From the correlation function ( )C t between the evolving reactant state and the 

stationary product state recorded at each time step, we obtain the correlation function as a 

function of energy by taking the Fourier Transform 

 
ˆ

( ) ( )iEtA E Exp C t dt
τ

τ

ψ − +
−

 −
=  

 
∫



 (5.86) 

S-matrix elements, 

 
( )

( ) ( ), ( ) ( )
2 ( ) ( )k k

k E
S E A E

k E k E
ψ

πµη η− + − +∗
− +

=
− +



 (5.87) 

are then computed by expressing both k and the reactant/product initial expansion 

coefficients [ ]kη±  in the momentum representation as a function of energy, 
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 2( ) Ek E µ
=



 (5.88) 

 
1/4

2 2 2
0 0

2( ( )) exp ( ( ) ) ( )k E x k E k x ik E xη
π

   = ∆ − − ∆ +    
  (5.89) 

The [ ]kη± s are determined analytically from the Gaussian wave function which defined 

our initial states at 0t =  (equation(5.82)).  Here, 0k and 0x refer to the respective initial 

conditions for each wave-packet from Table 5.4.   

 The overlap between initial expansion coefficients ( )k Eη±    , the wave 

vector ( )k E


, and the Fourier transform of the correlation function ( )A Eψ − + are 

shown in Figure 5.17.   
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Figure 5.17.  Scaled Overlap of equation (5.87) components as a function of Energy.  Since the 
correlation function can rise much faster than the product of the expansion coefficients a division 
error is possible at low energies.  How to deal with low energy calculations is discussed in Section 6.  
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Clearly, a division error resulting from dividing a larger number by a smaller number 

exists at low energies since the Fourier Transform of the correlation function can rise 

much faster than the product of the initial expansion coefficients in the denominator of 

equation (5.87).  Methods for dealing with low energy resolution will be discussed in 

Chapter 6 where low energy phase shifts are investigated. 

 An issue may arise during the calculation of the correlation function between the 

dispersing wave-packet and the periodic nature of the Fourier transform.  When the 

dispersing wave-packet crosses the grid boundary, the transform will cause the exiting 

wave-packet to reemerge from the opposite boundary and continue propagating across 

the same grid space.  If this occurs before the dot product of the reactant wave-packet’s 

trailing edge and product Møller state is negligible, the leading edge will introduce non-

physical anomalies into the correlation calculation.  This non-desirable situation can 

precipitate construction of larger and larger coordinate grid spaces to compensate, which 

is not computationally advantageous.  Fortunately, a proven workaround does exist, the 

inclusion of an absorbing boundary condition. 

An absorbing boundary condition is a useful tool often employed to compensate 

for this phenomenon.  To employ this technique, the interaction potential operator, ÎV , of 

the Hamiltonian is augmented by an additional imaginary piece,  

 ˆ ˆ ˆ
I aV V iV= ± , (5.90) 

which attenuates the wave function as it approaches the edge of the grid space.   Inclusion 

of this non-physical condition does not have an adverse effect on the calculation unless 

the absorbing boundary overlaps the product Møller state.  If the absorbing boundary did 
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overlap the product Møller state, the absorbing boundary would artificially reduce the 

evolving wave-packet/product Møller state correlation function.  For this research, we 

utilize the same exponential functional form successfully employed by Calfas and Weeks, 

[39] and later Niday [41] for three body atomic problems, 

 ( )2
0expa

x x
V A

B

 − −
=  

  
 (5.91) 

where the amplitude (A) and width (B) parameters can be tweaked to maximize 

attenuation and minimize reflection at the boundary.  Here, 0x  was set to max 1600x = fm 

whereas the values for A= 3000 MeV and B=27195 fm2 were determined by trial and 

error. 

5.9.3. Analytic – Numerical Comparison 

 Given the information from the previous section, determining scattering matrix 

elements from equation (5.87) is uncomplicated.  Figure 5.18 compares the scattering 

amplitude analytic to the numerical solution whereas Figure 5.19 contrasts the phase shift 

solutions.  The analytic solutions are represented as circles. 
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Figure 5.18.  Analytic vs. Numerical S-Matrix Amplitude.  A scattering amplitude of unity is 
expected since the entire wave form should be reflected from the potential barrier at an 0.5r fm≈ .  
The apparent ringing low energy is associated with a division error and can be remedied by an 
appropriate choice of a low energy wave packet. The lower sampling rate failed to converge to one 
due to a poor choice in coordinate step size.   

 
 
 
Intuitively we would expect the scattering amplitude to be one since the entire 

waveform should be reflected from the potential barrier.  The failure of the lower 

sampling rate to meet this expectation stems from a poor choice of step size.  Here the 

lower sampling rate corresponds to about two samples per fm which implies that the 

square well appears to have more of a trapezoid shape than that of a square.   If we 

increase the sampling rate by four orders of magnitude, the expected scattering amplitude 

of one is obtained.  Note that both solutions also exhibit a ringing effect at the upper and 

lower energy limits, which is independent of sampling rate.  This ringing is a result of the 
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division by the product of the expansion coefficients [ ]( )k Eη


 in equation(5.87), which 

are small.     
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Figure 5.19.  Analytic vs. Numerical Phase Shift.  The phase shift is more susceptible to a poor choice 
in coordinate step size than the scattering matrix amplitude.  At the lower sampling rate, the square 
well appears to be more of a trapezoid than a square well and fails to converge to the analytic 
solution.  Since the actual potentials are free of sharp discontinuities, lower sampling rates should be 
possible when calculations with the AV18 are performed. 
 
 

 Shifting the focus now to Figure 5.19, the asymmetric square well phase shift 

exhibits a greater sensitivity to the trapezoid appearance of the well than the scattering 

matrix amplitude.  At the low 212 rate, the analytic and calculated differ by about 15 

degrees.  As the sampling rate is increased to 216, the phase shift aligns with the analytic 

solution.  These issues should not pose a problem with the actual AV18 potential since all 

surfaces are smooth and free of sharp discontinuities within the range of the nuclear 

strong force. 
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6. Presentation of Results 

 The results of this research are presented in three main sections.  The first 

examines the 1S0 potential.  The 1S0 potential is the simplest two-nucleon case where all 

three nucleon- nucleon combinations are possible (pp, pn, and nn).  The lack of a 

centrifugal component makes it possible to position the wave-packets close to the 

potential well on a small grid space.  As a result, computational time is significantly 

reduced.  Subsequent calculations, however, become more complex as the effect of 

angular momentum can no longer be ignored.  Coordinate grid spaces must be expanded 

to compensate for the longer range of the centrifugal term 2

( 1)
2

L L
Rµ
+ of effV .  Section 6.2 

assesses the computational impact of angular momentum through J=4.  Finally, a more 

efficient method for calculating nuclear phase shifts that exploits the innate 

characteristics of the potential is developed in Section 6.3. 

6.1. The 1S0 Potential 

 For the 1S0  potentials, there exists one effective potential surface for each possible 

nucleon combination, one for neutron-neutron, one for neutron-proton, and one for 

proton-proton.  These are shown in Figure 6.1. 
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Figure 6.1.  The 1S0 AV18 potentials.  The first frame shows the dimensions of the potentials.  The 
second frame highlights the 0.3 MeV Coulombic barrier on approach to the well.  The third frame 
illustrates the slight differences in maximum well depth between the three potentials. 
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A noticeable surface similarity between the plots is immediately apparent.  In fact, the 

only distinguishing feature between them is the slight increase in the pp potential 

approaching the nuclear well.  The small differences in the last frame of Figure 6.1 are 

due to the charge dependence of the strong force whereas the slight increase in the middle 

frame is a consequence of Coulombic repulsion.  Despite the surface similarity, some 

general information about the phase shift’s qualitative aspects may be inferred: 

1. Secondary wells are not evident so portions of the wave packet cannot become 
delayed in exiting the interaction region and generate resonant features such 
as secondary peaks in the amplitude of the scattered wave packet. 

   
2. The phase shifts should be similar since only minor differences exist between 

the three 1
0S  potentials. 

 
3. All are attractive (negative) therefore, the resulting phase shifts should be 

primarily positive .[77].   
 

As shown, the AV18 potentials are smooth and free of any discontinuities within the 

interaction region.  This is not the case outside the interaction region where only the nn 

and np potentials tend to zero well before the 140 fm cut-off.  Here, the pp potential is 

still slightly positive at termination due the slow 1
r

Coulombic tail decay (Figure 6.2). 
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Figure 6.2.  The 1S0 potentials at cut-off.  The 0.01 MeV step in the proton-proton potential should 
have minimal impact on the phase shift calculation.   

 

 Although the 1
0S potential’s step at 140 fm has minimal impact on the phase for 

the 1S0 potential, we still choose the initial coordinate position of the wave-packets to be 

well outside the interaction region at 400 fm to minimize any possible low energy 

interference.  Subsection 6.1.1 discusses the initial guess for coordinate/temporal step 

size.  Refinement of parameters and test for convergence of these step sizes are the 

subject of Subsection 6.1.2.  Subsection 6.1.3 describes a methodology for determining 

an appropriate set of absorbing boundary conditions.  Finally, Subsection 6.1.4 presents 

the results of the CPM for the 1S0 potential. 
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6.1.1. Selection of Initial Coordinate and Temporal Step Size 

Obviously, the choice of coordinate and temporal grid parameters size can 

significantly influence the computational cost of this technique.  A poor choice may 

never provide any useful information nor prove to be more advantageous than traditional 

time-independent methods.  In this section, an outline on how to estimate an appropriate 

step size is presented.  

 Nyquist’s sampling theorem provides a useful prescription for establishing an 

initial guess for an appropriate coordinate step size.  The theorem stipulates that in order 

to reconstruct an original analog signal digitally, the sampling rate must be twice the 

highest frequency observed in the original analog waveform.  Here, the interesting 

features of the potential well illustrated in Figure 6.1 only exist over the first few 

femtometers so at least two samples per fm are required to provide some reasonable phase 

shift information.  Given our initial choice of a 1600 fm coordinate grid and the power of 

2 FFT condition, 

 12

1600[ ] 0.391[ ]
2

fm fm=  (6.1) 

is the first possible step size candidate that meets the criterion.  

 An initial estimate for the temporal step size can just as easily be determined 

using our nuclear convention form of the energy-time uncertainty relation,  

 
max

1t
E

∆ = , (6.2) 

Here, Emax  is the sum of the potential energy given by the depth of the nuclear well (115 

MeV) and the kinetic energy computed from the highest value of k contained within the 
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wave packets (543 MeV).  For convenience, we set max 1000E MeV=  which establishes 

0.001 ντ as an upper limit for τ∆ .  Given that it takes about 80 ντ for the amplitude of the 

correlation function between the evolving/product wave-packet to fall below 10-5, we 

have, 

 17

80 0.001 0.0006104 
2

ν
ν ν

ττ τ≥ = , (6.3) 

for the temporal step initial guess.   These choices again represent initial guesses and 

should not be assumed to be optimal.  Refinement of these parameters is the subject of 

the next section.   

6.1.2. Parameter Refinement and Convergence Tests 

In this section, we seek to ascertain the most appropriate coordinate and temporal 

step size to achieve suitable results while minimizing computational effort.    Beginning 

with the initial guesses identified in the last subsection, systematic convergence tests 

were performed using the 1S0 pn potential.  To test for coordinate step size convergence, 

the time step was held constant while r∆ was successively reduced by factors of two until 

the phase shift converged on a stable phase value.  As shown in Figure 6.3, the threshold 

for coordinate step convergence is obtained at a r∆ of 0.195 fm.   
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Figure 6.3.  Delta r Convergence for Fixed Delta t.  A step size smaller 0,195  fm is unnecessary since 
the phase shift has already converged to a stable value. 

 

Here we have chosen to zoom into a small energy range since small variations in 

the phase shift would not be readily apparent on the 0-350 MeV scale.  This choice for 

r∆  fixes the maximum momentum supported by the grid space to be 12.56 
fm

±  since 

max
1 k
r

=
∆

.  An optimal value for t∆ (0.00031 ντ ) was determined similarly by holding 

this new r∆ constant while reducing t∆  by factors of two.   
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6.1.3. Absorbing Boundary Conditions 

Obviously, the amount of time required to perform CPM calculations is a function 

of grid size; the larger the grid, the more time that is required to complete the calculation. 

For these and subsequent higher order J calculations, insertion of an appropriate 

boundary condition is critical as it not only reduces grid size and computation effort but 

also prevents faster moving wave-packet components from reaching the boundary before 

the slower components have probed the potential.   

Selection of an appropriate boundary hinges on proper selection of the boundary 

width B and amplitude A parameters of equation 4.59, 

 ( )2
0expa

x x
V A

B

 − −
=  

  
. (6.4) 

An appropriate selection was made by computing the correlation function between the 

reflected portion of an evolving wave-packet incident on the boundary and negative 

momentum product state.  A negative momentum product state refers to a wave-packet 

with the same exact parameters as the initial reactant state save one, the sign of the initial 

momentum. The dissipation of a propagating wave-packet by an absorbing boundary is 

shown in Figure 6.4 .   



 

108 

 

400 450 500 550 600 650 700 750 800
0

0.02

0.04

0.06

0.08

0.1

fm

A
m

pl
itu

de
 (M

eV
)

( )50t νψ τ=

   

 

Scaled
Absorbing
Boundary

( )150t νψ τ=

( )100t νψ τ=

400 450 500 550 600 650 700 750 800
0

0.02

0.04

0.06

0.08

0.1

fm

A
m

pl
itu

de
 (M

eV
)

( )50t νψ τ=

   

 

Scaled
Absorbing
Boundary

( )150t νψ τ=

( )100t νψ τ=

 

Figure 6.4.  Dissipation of an Evolving Wave-Packet by an Absorbing Boundary.  The choice of an 
appropriate absorbing barrier quickly dissipates the propagating wave packet.  An absorbing 
boundary improves computational efficiency by reducing the coordinate grid space necessary to 
perform a time dependent scattering calculations.  

 

 

By 150 ντ most of the incident wave packet has been dissipated.  The absorption of the 

boundary was maximized by varying the parameters by trial and error until the 

correlation function between the wave packet reflected off the barrier and the negative 

momentum product state was minimized.  Using this approach, an amplitude, A, of 3000 

MeV and a width, B, of 329.063 fm were found to be acceptable.  All 1S0 CPM parameters 

are summarized in Table 6.1.      
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Table 6.1.  Initial Parameters used for nuclear CPM calculations 

Parameter Quantity Units 
xmax 1600 fm 
kmax 2.56 1/ fm 

Neutron-Proton Reduced Mass, µpn 0.01205660  mν  
Neutron- Neutron Reduced Mass, µnn 0.01206491 mν  

Proton -Proton Reduced Mass, µpp 0.01204830 mν  
Coordinate Points 213  
Coordinate Step 0.195 fm 

Time 80 ντ  
Temporal Points 218  

Time Step 0.000305 ντ  
Initial Reactant Coordinate, 01x  400 fm 
Initial Product Coordinate, 02x  400 fm 
Initial Reactant Momentum, 01k  −1.253 1/ fm 
Initial Product Momentum, 02k  1.253 1/ fm 

Packet Spread, x∆  1.814  fm 
Barrier Amplitude (A) 3000 MeV 

Barrier Width (B) 329.063 fm 
 
 

6.1.4. The 1S0 Phase Shifts 

 The absorbing boundaries and wave-packets were configured based upon the 

Table 6.1 parameters for propagating on the three 1S0 potentials.  For each case, a 

correlation function, S-matrix, and phase shift were computed for comparison to the ANL 

published phase shift data.  The CPM/ANL 1S0 phase shift comparisons are shown in 

Figure 6.5 through Figure 6.7.  ANL’s data was only available at the discrete energies of 

1, 5, 10, 25, 50, 100, 150, 200, 250, 300, and 350 MeV.     
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Figure 6.5.  1S0 CPM vs. ANL neutron-neutron phase shift.   

 
Figure 6.6.  1S0 CPM vs. ANL proton-neutron phase shift  
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Figure 6.7.  1S0 CPM vs. ANL proton-proton phase shift without analytic correction 

 

All of these plots are smooth, free from resonant features, and exhibit a positive slope 

that is indicative of an attractive potential.  Here, the neutron-neutron and neutron-proton 

phase shifts achieve extremely good agreement with ANL’s published results, whereas 

the proton-proton case does not due to the long-range Coulombic tail.  Application of the 

Coulombic correction term from section 5.6.4 is discussed in the next subsection.   

6.1.5. The 1S0 pp Phase Shift Coulombic Correction 

 As we saw in the last section, 1S0 pp phase shift did not agree well with the 

published ANL results.  Here, we apply the Coulombic correction developed in Section 
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 arg (1 )L i Lσ γ= Γ + + , (6.5) 

and the cut-off  correction,  

 ln(2 )kpγ , (6.6) 

where, 

 
2

2
0

2,   
4

e Ek
k

µ µγ
πε

= =
 

. (6.7) 

Here, µ is the pp reduced mass, E is Energy,  is Plank’s constant, p is the coordinate 

grid Coulombic cutoff point of 140 fm, 0ε  is the permittivity of free space and e is the 

electron charge magnitude (Table 6.2).  Note that only the Coulombic term depends on 

the angular momentum L whereas both the Coulombic and the cutoff correction terms 

depend on the momentum, k .  It is apparent from the plot of these two terms (Figure 

6.8) that the cut-off correction has little impact on the solution and that the Coulombic 

term dominates.   Given our calculated 1
0S  pp phase shift Lδ , a solution that more closely 

aligns with ANL’s data may be obtained by using equation (5.60), 

 ln(2 )L L L kpν δ σ γ= − +  (6.8) 

The corrected CPM solution is also shown in Figure 6.8.  

 
 

Table 6.2.  1S0 Coulombic and Cut-off Correction Parameters 

Parameter Quantity Units 
Angular Momentum, L 0  

Electron Charge Magnitude, e 1.602x10-19 C 
Permittivity of Free Space, 0ε  8.854x10-27 [farad/fm] 

Coulombic Cut-off Point, p 140 fm 
Proton -Proton Reduced Mass, µpp 0.01204830 mν  
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Figure 6.8.  The Coulombic and Cut-off Corrections (upper diagram) to the 1S0 pp Phase Shift (lower 
diagram).  The cutoff correction is small with respect to the magnitude of the Coulombic correction.  
When these corrections are applied, the 1S0 CPM result aligns with the published results from ANL. 
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6.2. Wave-Packets and the Asymptotic Limit 

We now look at the non 2x2 isospin triplet for each value of total momentum, J, through 

J = 3.  In the previous section, the angular momentum, L, was zero and had no impact on 

the calculation.  However, this is not the case for both the remaining 1x1 and 2x2 isospin 

triplets.  As L increases, so does the centrifugal barrier contribution to the potential 

(Figure 6.9).   
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Figure 6.9.  Centrifugal Barrier Potentials for L=1-3.  As the centrifugal barrier increases, the 
nuclear potential represents only a minor perturbation to the barrier.  Phase shifts for 2L ≥  are 
expected to be small. 

 
 
In fact for 2L ≥ , the short range nuclear well represents only a minor perturbation to the 

barrier potential.    

 In the previous 1S0 phase calculations, the wave-packets could be placed relatively 

close to the interaction region at 400 fm.  For that problem, the wave packets could be 
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considered in the asymptotic limit since the AV18 potential terminated at 140 fm and the 

centrifugal barrier provided no contribution (See Figure 6.2).  Here however 0L ≠ , so a 

choice for the initial position of the wave packets must be made further away from the 

origin.  Ideally, a point will be chosen close enough to the interaction region to minimize 

computational effort but still far enough away from the area to minimize the barrier 

potentials impact on the correlation function.  As an initial guess, points are chosen where 

each potential falls to roughly 1x10-4 MeV.  For the 3P1, this occurs at a distance of 800 fm 

(Figure 6.10).     
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Figure 6.10.  Decay of the Barrier Potential at Higher Values of r.  The asymptotic limit was initially 
assumed to be where the barrier potential fell below 1x10-4 MeV  Møller states were established to 
begin wave packet propagation based on this assumption at 800 fm, 1600 fm, and 3200 fm for 

1,  2,  and 3L = respectively. 
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 For each higher order L calculation, the initial positions were doubled such that 

the 1D2 and 3F3 cases started at 1600 fm and 3200 fm respectively.   To accommodate 

these changes, the coordinate grid size and number sampling points were increased by 

factors of two to maintain the 0.195 fm coordinate step size.  The same principle was 

applied to the number of time steps and maxτ .  The values for x∆ , k, and packet spread 

were the same as those previously given by Table 6.1.  The results of the pn CPM 

calculations are presented in the next three figures. 

 

 

Figure 6.11.  3P1 pn Phase Shift. Calculated from Wave Packets Initially Placed at 800 fm. 
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Figure 6.12.  1D2 pn Phase Shift Calculated from Wave Packets Initially Placed at 1600 fm. 
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Figure 6.13.  3F3 pn Phase Shift Calculated from Wave Packets Initially Placed at 3200 fm,   The low 
energy noise in this plot and the previous two plots results from a poor choice of wave packet.  The 
disagreement with the ANL, which increases as a function of L, is a result of a bad asymptotic limit 
assumption.   
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Although these solutions track well with ANL’s published results, two 

deficiencies are readily apparent.  First, there is a high degree of noise in the low energy 

regime (below 50 MeV), which suggests an inappropriate wave-packet choice was made 

to resolve this specific energy range adequately.  Our original wave packet amplitude was 

small at low MeV energies.  How to increase resolution at low MeV energies is discussed 

in Section 6.3. The other more noteworthy deficiency is that the error increases with each 

increase with L. This suggests a poor choice was made for the asymptotic assumption.  In 

an attempt to correct this problem, the initial start positions and grid sizes were doubled 

yet again.  The 3F3 phase shifts from this trial were still not satisfactory.  Crude 

calculations showed (See Figure 6.14) that for the 3F3  an initial position of 12,800 fm, a 

coordinate grid of 217 points, and temporal grid of 223 points would be more suitable.   
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Figure 6.14.  Crude 3F3 +Phase Shift Calculated from Wave Packets Initially Placed at 12,800 fm.  The 
results of this crude calculation indicate that placing the wave packets at 12,800 fm from the nuclear 
well would be a good asymptotic limit approximation.   
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Projections for both MSRC and Desktop processing based on previous optimized run 

times indicated these grid sizes would require a minimum 14-15 days per calculation for 

the 3F3 and high L cases independent of platform (Table 5.2).  Parallelization provides 

little or no additional benefit as the CPM is a serial algorithm. 

 
Table 6.3.  Projected MSRC and PC Run-Times  

Coord/Time Points MSRC-HPC11 RunTime (Days) P4 2400 Desktop RunTime (Days) 
17,17 0.22 0.24 
17,18 0.44 0.47 
17,19 0.88 0.94 
17,20 1.75 1.89 
17,21 3.50 3.78 
17,22 7.00 7.56 
17,23 14.0 15.11 
17,24 28.0 30.22 

 
 

Dispersion further compounds the problem.  As we move farther from the interaction 

region, the lower energy wave-packet components require more time to probe the 

potential and return to the initial position; making the computational cost of this 

technique become less attractive.  The next section presents an alternative methodology 

for handling these two issues. 

6.3. An Intermediate State Calculation 

 As we saw in the last section, the computational cost of placing the wave-packet 

in the asymptotic limit can be extremely high.  The following alternative approach 

leverages the specific problem characteristics to our benefit.  This section is divided into 
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two subsections.  The first deals with the 1x1 matrix elements of effV  and the second 

(Section 6.3.2) deals with the 2x2 elements matrix elements of effV . 

6.3.1. The Single Element Case 

 To minimize dispersion and accelerate subsequent calculation of the correlation 

function, it would be useful to place the wave-packets as close as possible to the 

interaction region.  A useful choice would be to center the wave packets at 400 fm as we 

did in Section 6.1 since it is well outside the AV18 pp cutoff point and far enough away 

from the absorbing boundaries for them to pose any problems.  In order to start the wave-

packet calculations in closer proximity to the well, we return to the definition of the 

Møller operator 

 0
ˆˆˆ lim

t

iH tiHtExp Exp
γ

γ
± → ∞

   −
Ω =   

   

 

. (6.9) 

Previous calculations assumed that the propagation began in the asymptotic limit solely 

under the full Hamiltonian, H.  Since acceptable results were not obtained under this 

assumption, the full form must be employed.   

 If we recall that the first operator, H0, contains only kinetic energy information, 

we can use equation (5.82) to analytically determine the reactant (product) wave packet’s 

form at some position where the centripetal barrier is negligible. Here, τ was increased 

until the wave packet peaks were well outside our asymptotic estimate of 12,800 fm 

determined in section 5.2. (Figure 6.15)  These intermediate states were then propagated 

back to 0τ =  under the full Hamiltonian, H, using the propagation algorithm.  This 

process established new Møller states for the phase shift calculations.   
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Since it requires considerable time to propagate the wave-packets back from 

τ− (τ ), it would be useful to know if the time step could be increased given that over this 

region the potential remains negligible.  So, comparisons were made between a wave 

packet determined analytically at 235 ντ  and a wave packet propagated to that same 

point using the propagation algorithm using τ∆ ’s of  0.00022 ντ , 0.00045 ντ , 0.00090 ντ , 

and 0.0018 ντ .  Absolute error tests indicated the time step could be increased by a factor 

of 23 without significant waveform degradation.  
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Figure 6.15.  Absolute Value of Dispersed Initial Reactant Wave-Packet.  The dispersed wave packet 
was calculated using the analytic free space propagator equation (5.82).  The peak of the wave packet 
was centered at twice the distance indicated by the crude calculation shown in Figure 6.14 to ensure 
minimal barrier interference.   This dispersed wave packet was then propagated back to the initial 
position to integrate barrier information into the Møller state for scattering matrix calculations.    
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 There is an inherent simplicity to this approach.  Consider the kinetic energy 

tumbling term, 

 2

( 1)
2 AB

L L
Rµ

+ . (6.10) 

Notice that the only difference between potentials outside the interaction region for a 

given choice of wave-packet is due to the reduced mass, µ , and angular momentum, L.  

This implies that if the reactant and product Møller states differ only by the sign of k0, the 

intermediate Møller state need only be calculated once for a specific L and µ  

combination.  In other words, these Møller states can stored and used repeatedly.  This 

capability facilitates rapid calculation of improved phase shifts as both our understanding 

of the strong force and our models that describe this understanding improve.    

 The usefulness of this approach is apparent if we consider the calculation of the 

neutron-proton L= 3 phase shifts, 3F2, 1F3, 3F3 and 3F4.  From Table 6.3, it would 

require at least 28 days of computational time to calculate each phase shift on a grid the 

size shown in Figure 6.15 (112 days total).  However if the Møller state is pre-calculated 

as described in the preceding paragraphs, the same four calculations can be performed in 

less than 12 hours.  This is a 99% reduction in computer runtime.  Subsequent neutron-

proton L = 3 phase shifts can be obtained from these intermediate Møller state in a matter 

of minutes.  This capability provides the nuclear community with a powerful new tool to 

calculate detailed phase shift information rapidly as new improved nuclear models 

become available.  For these and all remaining phase calculations, three wave-packets 

were employed to reduce the distortion prevalent below 50 MeV in the Section 5.2 

outputs (Figure 6.16 and Figure 6.17) 
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Figure 6.16.  Initial Positions of the Three Wave-Packets 
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Figure 6.17.  Initial Momentum Values of the Three Wave-Packets 
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 To achieve low energy resolution, the momentum wave packet must be narrow in 

k space and close to zero as shown in Figure 6.17.  However the narrower in k space we 

make the wave packet the broader the coordinate wave packet becomes (Figure 6.16).  

This necessitates initial coordinate wave packet positions farther from the interaction 

region.  The coordinate initial peak positions used here are centered at 200 fm, 300 fm, 

and 400 fm which correspond to k space peaks centered ± 1.253 [1/fm], ± 0.450 [1/fm], 

and ± 0.150 [1/fm] respectively.  The parameters used to calculate the Møller states from 

these wave packets are given in Table 6.4.    

 
Table 6.4.  Parameters used to calculate the Møller states for each wave-packet 

Broad Energy Wave Packet 
xmax 51200 fm 

Time 235 
ντ  

Coordinate/Temporal Points 218,217  
Coordinate Packet Peak 200 fm 
Momentum Packet Peak − 1.253 1/ fm 

Packet Spread 1.814 fm 
Mid Energy Wave Packet 

xmax 102400 fm 
Time 1320 

ντ  
Coordinate/Temporal Points 219,217  

Coordinate Packet Peak 300 fm 
Momentum Packet Peak −  0.450 1/ fm 

Packet Spread 5.277 fm 
Low Energy Wave Packet 

xmax 102400 fm 
Time 3950 

ντ  
Coordinate/Temporal Points 219,215  

Coordinate Packet Peak 400 fm 
Momentum Packet Peak −  0.150 1/ fm 

Packet Spread 16.491 fm 
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For each wave-packet, an intermediate state was calculated using equation (5.82) 

under the assumption that a dispersed peak location of at least 25,000 fm from the 

interaction region would be an acceptable asymptotic limit approximation (Figure 6.18).   
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Figure 6.18.  Absolute Value of the Three Wave Functions in the Intermediate Reactant States in the 
Asymptotic Limit.  The peak positions of the lower energy wave packets were doubled to further 
reduce the possibility of barrier interference. 

 
 
As an extra precaution, the intermediate peak positions of the low energy wave packets 

were doubled to further reduce the possibility of barrier interference.  These asymptotic 

states were then propagated back toward the interaction region under their respective full 

Hamiltonians until 0τ =  using our propagation algorithm; reconstituting our non-

dispersed wave packet with the desired centripetal barrier information.  Phase shifts were 

then calculated with the three wave-packets as before but with different propagation 

times since lower k wave packets are slower and require more time to interact with the 
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potential and return to their initial positions.  The results of these calculations were then 

spliced together to present a complete phase shift picture.  The parameters used to 

calculate the phase shifts using these Møller states are provided are Table 6.5.  On the 

next series of pages, the 3P1, 1D2, and  3F3 pn and pp phase shifts are shown.  From this 

series of plots, it is apparent that very good agreement exists between the ANL values 

and our CPM technique down to a few MeV.  Additional phase shifts combinations are 

included in Appendix 1.    

Table 6.5.  Parameters Used to Calculate the Phase Shifts from Three Møller States. 

Broad Energy Wave Packet 
xmax 1600 fm 

Time 80 
ντ  

Coordinate/Temporal Points 213,218  
Coordinate Packet Peak 200 fm 
Momentum Packet Peak −/+ 1.253 1/ fm 

Packet Spread 1.814 fm 
Mid Energy Wave Packet 

xmax 1600 fm 
Time 160 

ντ  
Coordinate/Temporal Points 213,219  

Coordinate Packet Peak 300 fm 
Momentum Packet Peak −/+  0.450 1/ fm 

Packet Spread 5.277 fm 
Low Energy Wave Packet 

xmax 1600 fm 
Time 320 

ντ  
Coordinate/Temporal Points 213,220  

Coordinate Packet Peak 400 fm 
Momentum Packet Peak −/+  0.150 1/ fm 

Packet Spread 16.491 fm 
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Figure 6.19.  Composite CPM Calculation for the 3P1 pn and the 3P1 pp Phase Shift. 
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Figure 6.20.  Composite CPM Calculation for the 1D2 pn  and the 1D2 pp Phase Shift 
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Figure 6.21.  Composite CPM Calculation for the 3F3 pn and the 3F3 pp Phase Shift 
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6.3.2. The 2x2 calculation 

 The first 2x2 block of effV  (3S1 and 3D1) represents our most difficult application 

of the CPM thus far.  S-Matrix element calculations for the 2x2 involve propagation on 

two coupled surfaces and subsequent computation of four-correlation functions.  Since 

the potential in the , , ,L S J T  basis is not diagonal, it is more efficient to transform to a 

diagonal basis to simplify exponentiation.  However, the kinetic energy matrix is 

undiagonalized as a consequence of this transformation.  Therefore, propagation requires 

two extra steps to transform between representations to the basis where the respective 

matrix is diagonal before operating on the wave vector.  These unitary transformations 

were identified by † and U U back in equation (5.29). 

 Although the same three initial wave-packets from the last section will be used for 

this calculation, to help illustrate the process here we only discuss the wave packet 

starting at 200 fm.  A sequence of four frames (Figure 6.22-Figure 6.25) from the multi-

surface propagation is provided to guide the discussion.  In the first frame, the reactant 

wave-packet is started on the lower 3S1 surface and two identical product wave-packets 

are positioned at the same location to determine the scattering probability to each 

channel.  The lower product state measures the reflected amplitude and phase in the 3S1 

channel and the upper wave-packet measures the magnitude and phase that is transferred 

to the coupled channel.  By the third frame, the incident wave-packet has entered the 

interaction region of the potential and has become mixed, as amplitude is apparent of the 

upper surface.  Both waveforms have started leaving the interaction region by the fourth 

frame.  The propagation is allowed to continue until the correlation function between the 
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incident and product wave-packets on both channels drops to the order of 10-5, 

completing the first part of the calculation.  The same computation is then computed 

again except the wave-packet is started on the upper 3D1 surface to complete the 2x2 

block (not shown).  
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Figure 6.22.  Initial 2x2 Wave-Packet Positions (Scaled).. The reactant wave packet is superimposed 
over the product wave packet on the 3S1 channel.  In this diagram, the 3D1 surface is not shown and 
the first off diagonal coupling surface 1ε from Figure 5.2 is artificially displaced for clarity along with 
the 3D1 product Møller state.   Absolute values of the wave packet are plotted.   
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Figure 6.23.  Evolving Packet Converges on Potential (Scaled) 
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Figure 6.24.  Reactant Packet Couples to Mixing Channel (Scaled) 
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Figure 6.25.  Mixed Packets Leave Interaction Region On Both Channels (Scaled).  The lower energy 
components of the wave packet have yet to leave the interaction region. 

 

 
The phase outputs obtained from this 2x2 calculation are highlighted Figure 6.26 

and Figure 6.27.  Again, good agreement exists between the CPM and the data provided 

by ANL.  The only slight abnormality is in the low energy region of the 3
1D  which is on 

the order of a tenth of a degree and considered to be negligible.   Additional computation 

can reduce this error further but was deemed not necessary since it has already been 

shown that enhanced low energy results can be obtained with the selection of an 

appropriate wave packet.  Here, L has even parity (L=0 or 2) and S is symmetric ( 1S = ).  

So, the wave function is symmetric and the pp and  nn phase shifts do not need to be 

computed.   However, in the next 2x2 block, 3
2P  and 3

2F , all three will need to be 

determined since L and S are anti-symmetric.   
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Figure 6.26.  Composite CPM Calculation for the 3S1 pn (top frame) and the ε_bar1 pn (bottom 
frame) Phase Shifts.  The ε_bar1 pn phase shift is associated with the off diagonal component of the 
first 2x2 block in the potential matrix given in Figure 5.2 
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Figure 6.27.  Composite CPM Calculation for 3D1 pn phase shift (top frame).  As the lower frame 
illustrates, the three wave packets chosen to perform these calculations provide good agreement with 
the published results down to about 1 MeV.  
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 For the 3
2P  and 3

2F  2x2 block, phase shifts were computed for the isospin triplet.  

These are shown in Figure 6.28 through Figure 6.31.  Of the three possible combinations 

only the pn and pp are given here, the remaining nn phase shifts are included in the 

Appendices.  

 

 

Figure 6.28.  Composite CPM  Calculation for the 3P2 pn Phase Shift . 
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Figure 6.29.  Composite CPM Calculation for the  ε_bar2 pn Phase Shift (upper frame) and the 3F2 
pn Phase Shift (lower frame).. The slight difference in phase at about 40 MeV is a splicing artifact . 
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Figure 6.30.  Composite CPM Calculation for the  3P2 pp Phase Shift (upper frame)  and the ε_bar2 
pp Phase Shift (lower frame). 
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Figure 6.31.  Composite CPM Calculation for the 3F2 pp Phase Shift.  The deviation from the 
published results stems from how the Coulombic correction is applied to the CPM results.  Higher L 
calculations of either 1x1 pp or 2x2 pn phase shifts do not exhibit this deviation  
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pn phase shifts.  There is only a small (tenth of a degree) step around 40 MeV in the 3F2 

pn phase shift which is merely a splicing artifact.  The same step is evident in the 3P2 pn 

phase shift when placed on the same scale.   What immediately stands out about the 

complementary 2x2 pp phase shifts is the deviation of our 3F2 phase shift from the 

published results (Figure 6.31).  This same error is present in the 3P2 pp phase shift, it is 
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higher order L (Figure 6.21), the source of the error must be associated with how we 
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applied the Coulombic correction to the 3P2, ε_bar2, and 3F2  2x2 pp block.  Stapp [18] has 

a possible explanation.   

The Coulombic correction developed in Section 5.6.4 corresponds to what Stapp 

[18] calls a “pure” state calculation or a 1x1 pp matrix element of effV .  In the 2x2 pp 

calculation, the evolving wave packets enter the interaction region and are mixed yielding 

s-matrix elements and phase shifts that are linear combinations of P and F.  These final P 

and F states are no longer “pure.”  Ideally, we could determine the unitary matrix which 

would diagonalize the 3P2, ε_bar2, and 3F2 pp 2x2 block and use the transformation to 

compute a mixed basis Coulombic correction.  Here we choose however to follow 

Stapp’s advice.   In his 1957 paper, he states that the “pure” Coulombic correction may 

be applied directly to the “bar” phase shifts without introducing a significant amount of 

error.  The tenth of a degree phase difference between the published results and our 3F2  

pp CPM solution is not significant and as Figure 6.32 illustrates well within the range of 

3F2 results obtained from other models [23-25, 32]. 
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Figure 6.32.  Comparison of the Calculated CPM 3F2 Phase Shift to Published Results from Other 
Time-Independent Calculations.  The tenth of a degree difference between the CPM result and the 
ANL results is not significant when compared to the differences between the AV18 results and the 
other models results. 
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6.3.3. The Cross Section 

 Nuclear calculations rely heavily on the determination of accurate cross sections 

to ascertain the probability of reaction between nuclides.  The phase shifts calculated in 

the previous section lend themselves readily to the determination of the nn, pn, and pp 

cross-sections.  Cross sections may be calculated by taking a weighted sum of the triplet 

and singlet phase shifts for a specified value of angular momentum L given by [7, 78], 

 2 2
triplet singlet

3 14
4 4

a aσ π  = + 
 

. (6.11) 

with, 

 
( )

( )( )

2 2
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L J L J L J
J
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k

a J
k

δ

δ δ δ

∞

=

∞

= − = = +
=

= +

= + + +

∑

∑
 (6.12) 

where k is the wave vector.  In these calculations, partial waves above L = 2 were not 

considered in the summation since 2sin (   1 degree)angle ≤  is very small and does not 

contribute significantly to the total cross section.  The calculated pn, pp, and nn total 

cross sections in units of barn ( 24 21 10barn m−= ) are presented in Figure 6.33 and Figure 

6.34 respectively.   

 It was our original intention to compare these cross sections to the Evaluated 

Nuclear Data Files (ENDF) posted on the Los Alamos National Lab website.  Although 

there was ample pn cross section data on the website, complementary pp and nn data was 

not available.  Attempts were also made to locate pp and nn total cross sections in the 

literature without success.  After an extensive search, we were only able to obtain  
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differential cross section data in our 0-400 MeV energy range.  Nonetheless, we can still 

make a couple of qualitative assessments about these plots.  One, the total cross section 

was determined correctly from the phase shifts otherwise; the pn phase shift in Figure 

6.33 would not have such a tight correlation with the published ENDF files.  Two, the pp 

total cross section (Figure 6.34) is the total cross section due to short-range forces alone.  

This is not what would be observed in the laboratory as the long range Coulomb force 

between the protons would combine with the nuclear potential and produce a different 

result.  Indeed, Blatt [7] mentions that below 10 MeV, the only partial wave appreciably 

changed by the nuclear well is 1
0S phase shift.  All other partial waves with 0L > would 

be scattered by the Coulomb force long before the particles could become close enough 

to experience nuclear effects. 
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Figure 6.33.  Total np Scattering Cross Section Compared to the LANL ENDF Data.   
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Figure 6.34.  Total pp Scattering Cross Section  (top frame) and the Total nn Scattering Cross Section 
(bottom frame).  It is important to remember that the pp cross section presented here is the total 
cross section due to short range forces alone.  No published results could be located for comparison 
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7. Conclusion and Recommendations for Future Work 

 This research effort is the first to demonstrate complete determination of nuclear 

scattering matrix elements for proton-proton, neutron-proton, and neutron-neutron 

scattering events utilizing the time-dependent CPM technique.  Wave-packet interaction 

with a potential in this technique is analogous to a laboratory experiment and provides 

intuitive insight into scattering dynamics.  This is a distinct advantage over the current 

time-independent scattering methods used by the nuclear community, which retain no 

additional collision data.   

 This work was also the first to demonstrate how Møller states can be leveraged to 

rapidly calculate high-energy resolution scattering matrix elements and phase shifts for 

an entire block of angular momentum, J.  This provides an ancillary utility.  Since the 

nuclear potential has such a short range, these same Møller states can be stored as reused 

to compute improved phase shifts as higher precision nuclear models become available 

with minimal computational effort. 

  The CPM determines the entire phase shift for a range of energies, whereas time-

independent techniques typically obtain a range of phase values for a specified energy. 

Thus depending on the desired information, CPM may be more advantageous.  CPM may 

also be advantageous as the problems become more complex since computational cost of 

this matrix multiplication technique scales as N2 or better versus the time-independent 

approaches which scale as N3 [50].   This section details the conclusions and outlines the 

recommendations for future research initiatives.   
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 When we initially set up our channel packet calculations, we attempted to place 

the Møller states within few thousand femtometers of the nuclear well and calculate the 

nuclear scattering matrix elements under the assumption that the centripetal barrier’s 

amplitude was small enough as to not interfere with the calculation.  This was an 

incorrect assumption.  Each increase in angular momentum corresponded to a significant 

increase in wave-packet start position.  From test calculations for L = 3 and 4, it was 

shown that the computational cost of positioning the wave-packets in a good asymptotic 

limit approximation was not practical.  As many as 14-15 days would be required for 

each phase shift calculation for 3L ≥  to achieve suitable convergence to the published 

data.   

 In an alternative approach, an analytic equation was used to obtain an 

intermediate state in a suitable asymptotic limit approximation.  Then, the time dependent 

algorithm was used to incorporate information about the centripetal barrier into each 

wave packet as the wave packets were propagated back to their original positions close to 

the nuclear well.  It was shown that not only could these Møller states be created at a time 

step 23 greater than utilized in the original approach but that these Møller states need only 

be calculated once for each nucleon-nucleon and angular momentum pairing.  This shift 

in approach resulted in a dramatic 25-50 fold increase in computation efficiency and 

reproduced published results from ANL with added energy resolution.   

  The work presented in this dissertation provides a foundation for future time-

dependent nuclear scattering calculations.  There are two primary proposals for future 

work.  One centers on application of this technique to a three nucleon scattering problem.  
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The other focuses on the development of an analytic technique for propagating a wave-

packet on the centrifugal barrier.  These two research initiatives are discussed below.   

7.1. The Three-Body Problem  

The three-body problem is the next logical extension of this research.  Here, there 

are three interacting partners that require nine coordinates to completely describe the 

motion.  Fortunately, nature helps limit the sheer number of possible scattering partners 

to two since the deuteron is the only two-nucleon system to exhibit binding.  For that 

reason, an incident proton and an incident neutron on a deuteron target are the only two 

possible three-body combinations.  Here, as in the two-body problem, the coordinate 

system, Hamiltonian, and basis must be determined before any three-body CPM 

calculations can be performed.  

  Although the choice could be made to perform this calculation in the Space-Fixed 

Center of Mass frame as we did in the two nucleon scattering problem, a more suitable 

coordinate system for the three-nucleon problem is the body fixed coordinate system.  In 

this coordinate system, the motion of the center of mass is eliminated by selecting Jacobi 

coordinates to describe the interaction.  These are shown in Figure 7.1 .   
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Figure 7.1.  Jacobi Coordinates.  The Jacobi coordinate system is a useful choice for performing 
three-body time-dependent scattering calculations.   

 

Here, R


is aligned along the body fixed z-axis and represents the separation between the 

deuteron and the incident particle, r is the distance between the deuteron constituents, φ  

is the azimuthal angle between the R


and r , and θ is orientation of the di-nucleon about 

body z axis.     

The Full Hamiltonian well suited for three-body problem is, 

 
2 22 2

2 2
, , ,

ˆ ˆˆ ˆˆ ˆ ˆ
2 2 2 2

R R
Interaction eff

A BC A BC BC A BC

P PL jH V V
R rµ µ µ µ

= + + + = + . (7.1) 
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
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where L2  refers to the tumbling of the composite system around the center of mass and J2 

refers to the rotation of the di-nucleon.  These terms are incorporated into the potential 

creating an effective potential of the form, 

 
2 2

2 2
,

ˆ ˆ
2 2eff ij ijk

A BC BC

L jV v v
R rµ µ

= + + +∑ ∑  (7.2) 

where the AV18 model represented here as ijv  is augmented by a three body correction, 

ijkv .  Neither the AV18 Model, nor any of the other NN models, serves as a suitable 

description of the three-body potential by themselves since all fail to adequately describe 

the coupling between three interacting partners.  Bound state energies of the Tritium atom 

in the AV18 are underestimated by around by 1 MeV compared to the measured value of 

8.48 MeV [8].  As shown in Figure 7.2, the agreement between the AV18 binding 

prediction (blue bars) and observation (green bars) continues to deteriorate rapidly with 

increasing N [80].  To compensate for the underbinding in heavier nuclei, ANL and the 

University of Illinois at Urbana have developed a new three-body correction designated 

as the IL2.  The IL2 (red bars in Figure 7.2) has been shown to be able closely 

approximate observed binding energies of heavier nuclei through A=12.  At this time, 

however, distributable code for the IL2 is not available so applying the CPM technique to 

the three-body problem will require development of an AFIT IL2 FORTRAN code [79] 
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Figure 7.2.  AV18, AV18/IL2, and Experimental Binding Energy. [8, 80]  Note the improvement in 
the binding energy when the IL2 correction is applied to the AV18.  The IL2 correction to the AV18 
has been able to reproduce the binding energies of nuclei containing up to twelve nucleons. 

 

 

 A well-suited basis set in which to represent the Hamiltonian is always important.  

Since the core of the three-body potential is the AV18, we expect that the basis set would 

resemble the basis set utilized in the two-body analysis,  

 1 2 2 1 2 2           rJ L S s s s T Rψ τ τ τ=  (7.3) 

and that the same spin (isospin) coupling encountered in Chapter 5.4 should help reduce 

the basis set to the more manageable form, 
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      J L S T R rψ =  (7.4) 

Here, it is recommended that the research be broken into at least two separate projects.  

The first should focus on developing a working IL2 code and calculating phase shifts for 

the elastic problem below 2.42 MeV.  The second project should focus on the inelastic 

scattering problem above 2.42 MeV.  For this second problem, the CPM technique will 

need to be extended for a change of channel from A+ (BC) to A+B+C before inelastic 

phase shifts can be computed.  Both projects will be challenging.   

7.2. Analytic Determination of the Møller State 

 Back in Section 6.3, we used equation (5.82) to analytically determine an 

intermediate state in a suitable asymptotic limit approximation then used the time 

dependent algorithm to propagate the wave packets back to their original positions to 

establish Møller states.  This approach incorporated centripetal barrier information into 

each wave packet prior to computing scattering matrix elements and reduced the amount 

of time required compute scattering matrix elements 99%.  Although we were able to 

make huge gains in computational efficiency, it still took almost twelve hours to compute 

the initial Møller states for the scattering matrix calculations.   

 An even more efficient and useful approach would be to develop an analytic 

solution to the time-dependent radial form of Schrödinger’s equation, 

 
2 2 2

2 2

( 1) ( )
2 2

L Li r V r
t r r r

ψ ψ
µ µ

 ∂ ∂ +
= − + + ∂ ∂ 

  

  (7.5) 

where the potential ( )V r  is set to zero.  This equation has the inhomogeneous PDE form 

 ( , )t xxu ku f x t= +  (7.6) 



 

152 

 

and can be expressed in terms of a Green’s function, K [81] 

 ( , ) ( ', , ) ( ',0) 'r t K r r t r drψ ψ= ∫  (7.7) 

which relates the initial condition, ( ',0)rψ , to some final state at some later time, ( , )r tψ . 

Andrews [44] has shown the solution to this Green’s function kernel for the repulsive 2

1
r

 

potential as,  

 ( )( 1) 2 2  ( , ', ) exp
2

r r i r rK r r t i r r J
t t t

ν
ν

µ µ µ− + ′ ′     ′= +           

 (7.8) 

where µ  denotes the reduced mass, Jν  denotes Bessel functions of the first kind, and the 

orbital momentum dependence is contained within dimensionless parameter ν , 

 1 ( 1)
4

L Lν  = + + 
 

  (7.9) 

Since solutions to ν  are in 1
2

n +  powers of angular momentum, the Bessel functions can 

be expanded in terms of cosines and sines [76] 

 1
2

2( ) sin( )J x x
xπ

=  (7.10) 

 3
2

2 sin( )( ) cos( )xJ x x
x xπ

 = −  
 (7.11) 

 5 2 2
2

2 3 3( ) 1 sin( ) cos( )J x x x
x x xπ

  = − −  
  

 (7.12) 

Given the above information, a test calculation was performed using the broad energy 

wave packet parameters given in Table 6.4 and a trapezoid integration algorithm.  

Although similar results were obtained to those obtained via our CPM calculations, an 



 

153 

 

additional 12 hours was required to complete the calculation.  Andrew’s Green’s function 

solution may be a good starting point for subsequent research. 
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 Appendix 

 

 

 

NN PHASE SHIFTS 

 FOR J = 0 – 5 

 

 

 

 

 

 

 

Data from Nijmegen (PWA) experimental data used when ANL data not available  
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 NP PHASE SHIFTS 

 FOR J = 0 – 5 

 

 

 

 

 

 

 

Data Compared To Results Provided From ANL  
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 PP PHASE SHIFTS 

 FOR J = 0 – 5 

 

 

 

 

 

 

 

Data from Nijmegen (PWA) experimental data used when ANL data not available  
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